Nuka Arctica supplies Greenland with all types of required goods. While transiting the North Atlantic and along the West Greenland coast valuable scientific data are collected, furthering our knowledge on the role of these ocean regions for overturning, heat-transport and carbon uptake. The measurement program on Nuka Arctica was instigated in the early 2000s and now includes underway temperature, salinity, ocean currents (ADCP) and air and sea surface CO2 partial pressure (pCO2). In addition ocean structure is regularly surveyed by dropping temperature probes (XBTs) into the ocean.
The pCO2 data are available from ICOS Norway. They are also included in SOCAT.
Whenever these data are used, preferably also when as part of SOCAT, please cite:
Olsen, A. et al. (2008), Sea-surface CO2 fugacity in the subpolar North Atlantic. Biogeosciences, 5: 535-547, doi:10.5194/bg-5-535-2008
Unvalidated TSG data are available in Near Real Time through CORIOLIS. Select TSG data, Nuka call sign (platform code) is OXYH2. These data have not been checked in any way nor corrected for the heating that occurs as the water pass the intake pump.
Validated data are available through LEGOS. These data have been validated and corrected. Salinity have been corrected based on comparison with salinity samples analyzed at the Nature Institute (Nuuk, Greenland) and with collocated upper (near 5m depth) data from Argo float profiles, using Alory et al. (2015)’s method. The temperature data have been corrected based on differences with 3m depth temperature data from XBT profiles or intake temperature measurements taken with the pCO2 inststrument. For the Nuka, if water flow was sufficient (near 50 l/minutes or more), this correction is close to -0.11°C. High precision temperature data recorded upstream of the pump are available in the pCO2 data files.
The XBT data are available through the SURATLANT website and on NOAA's 'high density XBT transects' site, under line AX1.
The ADCP data are available from Henrik Søiland.
This list provides an overview of all publications that have made use of the data produced onboard Nuka Arctica, both for dedicated studies and as part of global data compilations such as SOCAT.
Last updated January 2017Fassbender A. J. (2017), Non-Uniform ocean acidification and attenuation of the ocean carbon sink. Geophysical Research Letters, 44: 8404-8413, doi:110.1002/2017GL074389.
Fay A. R. (2017), Correlations of surface ocean pCO2 to satellite chlorophyll on monthly to interannual timescales. Global Biogeochemical Cycles, 31: 436-455, doi:10.1002/2016GB005563.
Ford, D. et al. (2017), Global marine biogeochemical reanalyses assimilating two different sets of merged ocean colour products. Remote Sensing of Environment, 203: 40-54, doi:10.1016/j.rse.2017.03.040.
DeVries, T. et al. (2017), Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature, 542: 215-218, doi:10.1038/nature21068.
Gharamti, M.E. et al. (2017), Ensemble Data Assimilation for Ocean Biogeochemical State and Parameter Estimation at Different Sites. Ocean Modelling, 112: 65-89, doi:10.1016/j.ocemod.2017.02.006.
Laurelle, G. G. (2017), Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation. Biogeosciences, 14: 4545-4561, doi:10.5194/bg-14-4545-2017.
Wang, H. et al. (2017), Decadal fCO2 trends in global ocean margins and adjacent boundary current-influenced areas. Geophysical Research Letters, 44: 8962–8970, doi:10.1002/2017GL074724.
Wanninkhof, R. and Trinanes, J. (2017), The impact of changing wind speeds on gas transfer and its effect on global air-sea CO2 fluxes. Global Biogeochemical Cycles, 31: 961-974, doi:10.1002/2016GB005592.
Ashton, I. G. et al. (2016), A sensitivity analysis of the impact of rain on regional and global sea-air fluxes of CO2. Plos One 11(9): e0161105, doi:10.1371/journal.pone.0161105.
Bakker, D. C. E. et al. (2016), A multi-decade record of high quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data, 8: 383-413, doi:10.5194/essd-8-383-2016.
Bourgeois, T. et al. (2016), Coastal-ocean uptake of anthropogenic carbon. Biogeosciences, 13: 4167-4185, doi:10.5194/bg-13-4167-2016.
Ciavatta, S. et al. (2016), Decadal reanalysis of biogeochemical indicators and fluxes in the North West European shelf-sea ecosystem. Journal of Geophysical Research - Oceans, 121: 1824-1845, doi:10.1002/2015JC011496.
Couldrey, M. P. et al. (2016), On which timescales do gas transfer control North Atlantic CO2 flux variability? Global Biogeochemical Cycles, 30: 787-802, doi:10.1002/2015GB005267.
Eyring, V. et al. (2016), ESMValTool (v1.0) – a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP. Geoscientific Model Development, 9: 1747-1802, doi:10.5194/gmd-9-1747-2016.
Jones, C. D. et al. (2016), C4MIP – The Coupled Climate-Carbon Model Intercomparison Project: experimental protocol for CMIP6. Geoscientific Model Development, 9: 2853-2880, doi:10.5194/gmd-9-2853-2016.
Landschützer, P.et al. (2016), Decadal variations and trends of the global ocean carbon sink. Global Biogeochemical Cycles, 30: 1-22, doi:10.1002/2015GB005359
Le Quéré, C. et al., (2016), Global Carbon Budget 2016. Earth System Science Data, 8: 605-649, doi:10.5194/essd-8-605-2016
Li, H. et al. (2016), Decadal predictions of the North Atlantic CO2 uptake. Nature Communications, 7: 11076, 7 pp, doi:10.1038/ncomms11076.
Li, W. et al. (2016), Reducing uncertainties in decadal variability of the global carbon budget with multiple datasets, Proceedings of the National Academy of Sciences of the United States of America, 113: 13104-13108, doi:10.1073/pnas.1603956113.
McKinley, G. A. et al. (2016), Timescales for detection of trends in the ocean carbon sink. Nature, 530: 469-472, doi:10.1038/nature16958
Shutler, J. et al. (2016), FluxEngine: A flexible processing system for calculating atmosphere-ocean carbon dioxide gas fluxes and climatologies. Journal of Atmospheric and Oceanic Technology, 33: 741-756, doi:10.1175/JTECH-D-14-00204.1.
Visinelli, L. et al. (2016), Impacts of data assimilation on the global ocean carbonate system. Journal of Marine Systems, 158: 106-119, doi:10.1016/j.jmarsys.2016.02.011.
Wrobel, I. and Piskozub, J. (2016), Effect of gas-transfer velocity parameterization choice on air-sea CO2 fluxes in the North Atlantic Ocean and the European Arctic. Ocean Science, 12: 1091-1103, doi:10.5194/os-12-1091-2016.
Yasunaka, S. et al. (2016), Mapping of the air-sea CO2 flux in the Arctic Ocean and its adjacent seas: Basin-wide distibution and seasonal to interannual variability. Polar Science, 10: 323-334, doi:10.1016/j.polar.2016.03.006
Alory, G., et al. (2015), The French contribution to the voluntary observing ships network of sea surface salinity. Deep-Sea Research Part I, 105: 1-18, doi:10.1016/j.dsr.2015.08.005
Jones, S. et al. (2015), A statistical gap-filling method to interpolate global monthly surface ocean carbon dioxde data. Journal of Advances in Modelling Earth systems, 7: 1554-1575, doi:10.1002/2014MS000416
Lauvset, S. K. et al. (2015), Trends and drivers in global surface ocean pH over the past 3 decades. Biogeosciences, 12: 1285-1298, doi:10.5194/bg-12-1285-2015
Le Quéré, C. et al., (2015), Global Carbon Budget 2015. Earth System Science Data, 7: 349-396, doi:10.5194/essd-7-349-2015
Le Quéré, C., et al. (2015), Global Carbon Budget 2014. Earth System Science Data, 7: 47-85, doi:10.5194/essd-7-47-2015
Iida, Y. et al. (2015), Trends in pCO2 and sea-air CO2 flux over the global open oceans for the last two decades. Journal of Oceanography, 71: 637-661, doi:10.1007/s10872-015-0306-4
Rödenbeck, C. et al. (2015), Data-based estimates of the ocean carbon sink variability - First results of the Surface Ocean pCO2 Mapping Intercomparison (SOCOM). Biogeosciences, 12: 7251-7278, doi:10.5194/bg-12-7251-2015
Zeng, J. et al. (2015), Surface ocean CO2 in 1990-2011 modelled using a feed-forward neural network. Geoscience Data Journal, 2: 47-51, doi:10.1002/gdj3.26d
Bakker, D. C. E., et al. (2014), An update to the Surface Ocean CO2 Atlas (SOCAT version 2). Earth System Science Data, 6: 69-90, doi:10.5194/essd-6-69-2014
Chafik, L., et al. (2014), On the spatial structure and temporal variability of poleward transport between Scotland and Greenland. Journal of Geophysical Research, 119, 824-841, doi:10.1002/2013JC009287
Landschützer, P., et al. (2014), Recent variability of the global ocean carbon sink. Global Biogeochemical Cycles, 28: 927-949, doi:10.1002/2014GB004853
Laurelle, G. G., et al. (2014), Regionalized budget of the CO2 exchange at the air-water interface in continental shelf seas. Global Biogeochemical Cycles, 28: 1199-1214, doi:10.1002/2014GB004832
Lauvset, S. K. and N. Gruber (2014), Long-term trends in surface ocean pH in the North Atlantic. Marine Chemistry, 162: 71-76, doi:10.1016/j.marchem.2014.03.009
Le Quéré, C., et al. (2014), Global Carbon Budget 2013. Earth System Science Data 6: 235-263, doi:10.5194/essd-6-235-2014
Majkut, J. D. et al. (2014), A growing oceanic carbon uptake: Results from an inversion study of surface CO2 data. Global Biogeochemical Cycles, 28: 335-351, doi:10.1002/2013GB004585
Rödenbeck, C. et al. (2014), Interannual sea-air flux variability from an observation-driven ocean mixed-layer scheme. Biogeosciences, 11: 4599-4613, doi:10.5194/bg-11-4599-2014
Takahashi, T. et al. (2014), Climatological distributions of pH, pCO2, Total CO2, Alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations. Marine Chemistry, 164: 95-125, doi:doi:10.1016/j.marchem.2014.06.004
Tjiputra, J. F. et al. (2014), Long-term surface pCO2 trends from observations and models. Tellus B, 66: 23083, doi:10.3402/tellusb.v66.23083
Woods, S. et al. (2014), Influence of cool skin layer on global air-sea CO2 flux estimates. Remote Sensing of the Environment, 145: 15-24, doi:doi:10.1016/j.rse.2013.11.023
Zeng, J. et al. (2014), A global surface ocean fCO2 climatology based on a feed-forward neural network. Journal of Atmospheric and Oceanic Technology, 31: 1838-1849, doi:10.1175/JTECH-D-13-00137.1
Chen, C.-T. A. et al. (2013), Air–sea exchanges of CO2 in the world’s coastal seas. Biogeosciences, 10: 6509–6544, doi:10.5194/bg-10-6509-2013
Fay, A. R. and G. A. McKinley (2013), Global trends in surface ocean pCO2 from in situ data. Global Biogeochemical Cycles, 27: 541-557, doi:10.1002/gbc.20051
Landschützer, P. et al. (2013), A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink. Biogeosciences, 10: 7793-7815, doi:10.5194/bg-10-7793-2013
Pfeil, B. et al. (2013), A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data, 5: 125-143, doi:10.5194/essd-5-125-2013
Roedenbeck, C. et al. (2013), Global surface-ocean pCO2 and sea-air CO2 flux variability from an observation-driven ocean mixed-layer scheme. Ocean Science, 9: 193-216, doi:10.5194/os-9-193-2013
Sabine, C. L. et al. (2013), Surface Ocean CO2 Atlas (SOCAT) gridded data products. Earth System Science Data, 5: 145-153, doi:essd-5-145-2013
Schuster, U. et al. (2013), An assessment of the Atlantic and Arctic sea-air-CO2 fluxes, 1990-2009. Biogeosciences, 10: 607-627, doi:10.5194/bg-10-607-2013
Signorini, S. et al. (2012), The role of phytoplankton dynamics in the seasonal and interannual variability of carbon in the subpolar North Atlantic – A modelling study. Geoscientific Model Development, 5: 683-707, doi:10.5194/gmd-5-683-2012
Tjiputra, J. F. et al. (2012), A model study of the seasonal and long–term North Atlantic surface pCO2 variability. Biogeosciences, 9: 907-923, doi:10.5194/bg-9-907-2012
Després, A. et al. (2011), Mechanisms and spatial variability of meso scale frontogenesis in the northwestern North Atlantic Subpolar gyre. Ocean Modelling, 39: 97-113, doi:10.1016/j.ocemod.2010.12.005
Després, A. et al. (2011), Summer-time modification of surface fronts in the North Atlantic subpolar gyre. Journal Geophysical Research, 116, C10003, doi:10.1029/2011JC006950
Våge, K. et al. (2011), The Irminger gyre: Circulation, convection and interannual variability. Deep-Sea Research I, 58, 590-614, doi:10.1016/j.dsr.2011.03.00
Metzl, N. et al. (2010), Recent acceleration of the sea surface fCO2 growth rate in the North Atlantic subpolar gyre (1993-2008) revealed by winter observations. Global Biogeochemical Cycles, 24, GB4004, doi:10.1029/2009GB003658
Omar, A. M. et al (2010), Spatiotemporal variations of fCO2 in the North Sea. Ocean Science, 6: 77–89, doi:10.5194/os-6-77-2010
Reverdin, G. (2010), North Atlantic subpolar gyre surface variability (1895-2009). Journal of Climate, 17: 4571-4584, doi:10.1175/2010JCLI3493.1
Chierici, M. et al. (2009), Algorithms to estimate the carbon dioxide uptake in the northern North Atlantic using shipboard observations, satellite and ocean analysis data. Deep-Sea Research II, 65: 630-639, doi:10.1016/j.dsr2.2008.12.014
Pierrot, D. et al. (2009), Recommendations for Autonomous Underway pCO2 Measuring Systems and Data Reduction Routines. Deep-Sea Research II, 56: 512-522, doi:10.1016/j.dsr2.2008.12.005
Takahashi, T. et al. (2009), Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep-Sea Research II, 56: 554-577, doi:10.1016/j.dsr2.2008.12.009
Telzewski, M., A. et al. (2009), Estimating the monthly pCO2 distribution in the North Atlantic using a self-organizing neural network. Biogeosciences, 6: 1405-1421, doi:10.5194/bg-6-1405-2009
Watson, A. J. et al. (2009), Tracking the variable North Atlantic sink for CO2. Science, 326: 1391-1393, doi:10.1126/science.1177394
Olsen, A. et al. (2008), Sea-surface CO2 fugacity in the subpolar North Atlantic. Biogeosciences, 5: 535-547, doi:10.5194/bg-5-535-2008
Knutsen, Ø. et al. (2005), Direct measurements of the mean flow and eddy kinetic energy structure in the upper ocean. Geophysical Research Letters, 14: L14604, doi:10.1029/2005GL023615
Reverdin, G. et al. (2002), Recent changes in the surface salinity of the North Atlantic subpolar gyre. Journal of Geophysical Research, 107(C12), 8010, doi:10.1029/2001JC001010
© web design based on: free css templates