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In The Comparative Method, Ragin (1987) outlined a procedure of Boolean
causal reasoning operating on pure coincidence data that has since become
widely known asQCA (Qualitative Comparative Analysis) among social sci-
entists. QCA—also in its recent forms as presented in Ragin (2000, 2008)—
is designed to analyze causal structures featuring no more than one effect and
a possibly complex configuration of mutually independent direct causes of
that effect. The paper at hand presents a procedure of causal reasoning that
operates on the same type of empirical data as QCA and that implements
Boolean techniques related to the ones resorted to by QCA. Yet in contrast
to QCA, the procedure introduced here successfully identifies structures in-
volving both multiple effects and mutually dependent causes. In this sense,
the paper at hand generalizes QCA.
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1. INTRODUCTION

In The Comparative Method, Ragin (1987) developed a methodology of causal
analysis that has since become known asQCA (Qualitative Comparative Analysis)
among social scientists. Ragin has introduced QCA as an alternative to standard
quantitative and qualitative methodologies prevalent in social sciences. Social sci-
entists are often confronted with data sets that are too small and too inhomogeneous
for a significant statistical analyzability, or, as Mahoney and Goertz (2006) have ar-
gued, they are explicitly interested in sufficient or necessary causes rather than in
statistical causal dependencies. At the same time, however, small-N data sets are
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Low levels of elite conflict

Creation of narrow coalitions

Developmental state

Production of low-cost goods that
are competitive on world markets

Continuous shifts into higher
value-added goods

Figure 1. A complex structure consisting of a chainlike and a common cause sub-
structure that cannot be directly analyzed by QCA.

still too large and too complex for an in-depth qualitative analysis. QCA, accord-
ingly, is designed so that it occupies a middle ground between the variable-oriented
and the case-oriented traditions. QCA as presented in Ragin (1987) treats single
cases in its input data as complex configurations of dichotomous variables. Cases
feature one dependent (effect or outcome) variable and an arbitrary amount of in-
dependent (possible cause) variables. By a systematic comparison—implementing
Boolean techniques—of such configurations, conjunctions of the independent vari-
ables can be identified as complex causes of the dependent variable. Every depen-
dent variable can have several alternative complex causes which are disjunctively
concatenated in the output of QCA. Complex causes are seen as sufficient con-
ditions, disjunctions of alternative causes as necessary conditions of their effects.
The Boolean techniques are, inter alia, resorted to in order to minimize complex
conditions that involve redundant variables.

Dichotomous variables correspond to conventional crisp sets. In Ragin (2000)
and Ragin (2008), QCA has been thoroughly (and fruitfully) adapted for fuzzy
sets, yet the fundamental presumptions of QCA and, most of all, the significant
limitations on the complexity of the causal structures that can be uncovered by
QCA have remained unaltered: QCA is designed to analyze causal structures
featuring exactly one effect and a possibly complex configuration of mutually in-
dependent direct causes of that effect.1 For brevity, call the assumed singularity of
the analyzed effect the singularity assumption, or (SNG) for short, and the assumed
mutual independence of causes the independence assumption, or (IND) for short.
Furthermore, an application of QCA always presupposes that it is known—or at
least determinable prior to implementingQCA—what variable within the analyzed
set of variables is the effect, and, accordingly, what variables are possible causes. I
shall refer to the assumed identifiability of causes and effects as (ICE).2

Certain ubiquitous causal structures violate (SNG) and (IND), most notably
causal chains and common cause structures. Indeed, it is fair to say that the ma-
jority of actual causal structures—also in the area of social sciences (cf. Goertz
2006)—by far exceed the complexity allowed by (SNG) and (IND). For example,
consider Waldner’s (1999:9) causal models of the connection between state build-
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ing and economic development in Turkey, Syria, Taiwan, and Korea as graphed in
figure 1: Low levels of elite conflict are necessary causes of the creation of nar-
row coalitions which are necessary for a developmental state. The latter, in turn,
is a sufficient cause of two parallel effects: production of low-cost goods that are
competitive on world markets, on the one hand, and continuous shifts into higher
value-added goods, on the other (cf. also Mahoney and Goertz 2006). This struc-
ture, hence, is built up of two causal chains and one common cause substructure. It
features both multiple effects and mutually dependent causes, i.e. it violates (SNG)
and (IND). Of course, a subdivision of such a complex structure into its separate
layers—e.g. ‘creation of narrow coalitions’ −→ ‘developmental state’ or ‘devel-
opmental state’ −→ ‘production of low-cost goods’—yields causal substructures
that satisfy both (SNG) and (IND). Such a subdivision would thus render a complex
structure amenable to a stepwiseQCA analysis: First, the dependency between the
creation of narrow coalitions and a developmental state and then the one between
a developmental state and the production of low-cost goods could be uncovered by
means of QCA. However, such a breaking down of complex structures into sim-
ple ones that satisfy (SNG) and (IND) presupposes that a great deal about the very
structure under investigation is known prior to its analyzability by QCA—hence
(ICE). The variables involved in the investigated cases must be categorized into
possible causes and possible effects prior to implementing QCA. In the end, what
QCA determines is merely whether possible causal dependencies in fact exist and
whether the cause variables constitute complex or alternative causes of the effect
or outcome under consideration.

QCA draws on ideas developed within the regularity theoretic tradition of the
philosophy of causation. Ragin himself sees QCA as a generalization and sys-
tematization of Mill’s methods of agreement and difference, and the core of the
Boolean techniques to minimize causal conditions used by QCA can be found in
Broad (1930), Broad (1944), or Mackie (1974).3 The paper at hand intends to
show that prior knowledge about the causal structure under investigation does not
need to be presupposed against a regularity theoretic background. The latter allows
for causal reasoning without presuming (SNG) and (IND). Thus, in what follows, I
shall present a procedure of causal reasoning that processes the same kind of empir-
ical data as QCA, yet does neither presuppose (SNG) nor (IND) nor (ICE). As will
become apparent as we proceed, abandoning these assumptions induces an adapta-
tion of the implemented Boolean techniques. While QCA essentially rests on the
well-known Quine-McCluskey optimization of truth functions, the procedure to be
presented here significantly deviates from the Quine-McCluskey algorithm.

Clearly, in the course of causally analyzing concrete processes in social sci-
ences prior causal knowledge is often available that guarantees a satisfaction of
either of the assumptions (SNG), (IND), or (ICE). In that case, of course, such prior
knowledge must be resorted to in order to simplify causal analyses. The more that
is known about a causal structure prior to analyzing it, the easier it is successfully
uncovered. One of the core motivations behind the procedure advanced in this pa-
per is simply to minimize the amount of prior causal knowledge necessary to derive
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causal structures from small-N data and to show that, in the end, such data can be
causally interpreted without prior knowledge about the very structure under inves-
tigation, irrespective of the latter’s complexity. Contrary to QCA, the procedure
presented here directly uncovers causal chains and common cause structures.

2. THE BACKGROUND

Prior to introducing its algorithmic steps, the regularity theoretic background
of the inference procedure to be developed in this paper shall be very briefly re-
viewed.4 Regularity theories of causation analyze causes and effects on type level,
i.e. event types—or factors for short—are seen as the primary relata of the causal
relation. A factor that causes another factor is said to be causally relevant to the
latter. Factors are taken to be similarity sets of event tokens, i.e. sets of type identi-
cal events or occurrences. Whenever a member of such a similarity set occurs, the
corresponding factor is said to be instantiated. Factors are symbolized by italicized
capital lettersA, B, C, etc., with variables Z, Z1, Z2, etc. running over the domain
of factors. They are negatable. The negation of a factor A is written thus: A. A is
simply defined as the complementary set of A. Alternatively, factors can be seen
as binary variables that take the value 1 whenever an event of the corresponding
type occurs and the value 0 whenever no such event occurs.5

Causal analyses are always relativized to a set of investigated factors. This
set is referred to as the factor frame of the analysis. Factors are virtually never
causally relevant to their effects in isolation. Rather, they are parts of whole causing
complexes—complex causes. A complex cause only becomes causally effective if
all of its constituents are co-instantiated, i.e. instantiated coincidently. Coincidently
instantiated factors are termed coincidences. As will be shown below, coincidences
constitute the empirical data processed by the procedure developed in this paper.6

Essentially, modern regularity theories analyze causal relevance with recourse
to minimalized regularities among factors. The crucial notion needed in the defini-
ens of causal relevance is the notion of a minimal theory. Briefly, a minimal theory
of a factor B is a minimally necessary disjunction of minimally sufficient condi-
tions of B. A conjunction of coincidently instantiated factors A1 ∧A2 ∧ . . .∧An,
which for simplicity shall be abbreviated by a mere concatenation of the respective
factors, is a minimally sufficient condition of a factor B iff A1A2 . . . An is suffi-
cient for B, i.e. A1A2 . . . An → B, and there is no proper part α of A1A2 . . . An

such that α → B. A “proper part” of a conjunction designates the result of any
reduction of this conjunction by one conjunct. Analogously, a disjunction of fac-
tors A1 ∨ A2 ∨ . . . ∨ An is a minimally necessary condition of a factor B iff
A1 ∨ A2 ∨ . . . ∨ An is necessary for B, i.e. B → A1 ∨ A2 ∨ . . . ∨ An, and there
is no proper part β of A1 ∨ A2 ∨ . . . ∨ An such that B → β. A “proper part”
of a disjunction designates the result of any reduction of this disjunction by one
disjunct.
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That a disjunction of minimally sufficient conditions of a factor B is mini-
mally necessary for B shall be symbolized by “⇒”, which is termed a double-
conditional. Thus, the following is an exemplary minimal theory:

AC ∨DE ∨ FGH ⇒ B (1)

Informally, (1) says that whenever AC or DE or FGH are instantiated, B is in-
stantiated as well; that whenever B is instantiated, AC or DE or FGH are in-
stantiated as well; and that sufficient and necessary conditions contained in (1) are
minimal. Membership in a minimal theory induces direct causal relevance: A fac-
tor A is directly causally relevant to a factor B iff A is part of a minimal theory
of B. Hence, (1) represents a causal structure such that AC, DE, and FGH are
alternative (direct) complex causes of B.

Analyzing the disjunction of alternative causes of B as necessary condition of
B amounts to claiming sufficiency of B for just that disjunction. As is often done
by critics of regularity accounts, the question might thus be raised as to how the
above analysis of causal relevance captures the undisputed non-symmetry of that
relation. For if B can be shown to be minimally sufficient for AC ∨DE ∨ FGH ,
it might be argued that—relative to the above analysis—B is likewise to be con-
sidered causally relevant to its alternative causes. Contrary to first appearances,
however, double-conditionals as (1) are not symmetrical with respect to the ex-
pressions to the left and the right of “⇒”. The instantiation of a particular disjunct
is minimally sufficient for B, but not vice versa. B does not determine a particular
disjunct to be instantiated. B only determines the whole disjunction of minimally
sufficient conditions. AC and DE and FGH are each minimally sufficient for
B, the latter however is only minimally sufficient for AC ∨ DE ∨ FGH . This
non-symmetry corresponds to the direction of determination.

Accounting for the non-symmetry of causal relevance in this vein has an im-
portant implication as regards the minimal complexity of causal structures. A con-
dition AC that is both minimally sufficient and necessary for a factor B cannot
be identified as cause of B, for B is minimally sufficient and necessary for AC
as well. All empirical evidence such mutual dependencies generate are perfectly
correlated instantiations of AC and B—both are either co-instantiated or absent.
Such empirical data can only be causally interpreted if external non-symmetries—
as e.g. temporal order—among the instances of AC and B are available. However,
as the procedure to be presented in this paper shall infer causal structures on the
same empirical basis as QCA, i.e. on the basis of mere coincidence information,
perfect correlations among factors shall be taken not to be causally interpretable
in the present context. In order to distinguish causes from effects and to orient the
cause-effect relation based on coincidence information alone, at least two alterna-
tive causes are needed for each effect.7

Ordinary causal structures far exceed (1) in complexity. Most causally relevant
factors are of no interest to causal investigations or are unknown. That is why
minimal theories must be either relativized to a specific causal background or kept
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open for later extensions. The latter is achieved by means of variables. Variables
X1, X2, . . . are introduced to stand for an open (but finite) number of additional
conjuncts within a sufficient condition, while YA, YB, . . . are taken to stand for an
open number of additional disjuncts in a minimal theory. If (1) is in this sense kept
open for additional factors, one gets:

ACX1 ∨DEX2 ∨ FGHX3 ∨ YB ⇒ B (2)

While direct causal relevance is analyzed with recourse to membership in sim-
ple minimal theories as (1) and (2), complex causal structures as chains or common
cause structures are represented by complex minimal theories. Simple minimal the-
ories can be conjunctively concatenated to complex theories: A conjunction of two
minimal theories Φ and Ψ is a complex minimal theory iff, first, at least one factor
in Φ is part of Ψ and, second, Φ and Ψ do not have an identical consequent.8 The
following are two exemplary complex minimal theories:

(AX1 ∨DX2 ∨ YB ⇒ B) ∧ (BX4 ∨GX5 ∨ YH ⇒ H) (3)

(AX1 ∨DX2 ∨ YB ⇒ B) ∧ (DX4 ∨GX5 ∨ YH ⇒ H) (4)

(3) represents a causal chain—B is the effect factor of the first conjunct and a cause
factor in the second conjunct—, (4) stands for a common cause structure—D is the
common cause of B and H . In this vein, causal structures of arbitrary complexity
can be represented in regularity theoretic terms. Accordingly, a factor A can be
said to be indirectly causally relevant to a factor B iff there is a sequence of factors
Z1, Z2, . . . , Zn, n ≥ 3, such that A = Z1, B = Zn, and for each i, 1 ≤ i < n: Zi

is part of the antecedent of a simple minimal theory of Zi+1.

3. THE BASIC IDEA AND INPUT DATA

Minimal theories represent causal structures in a transparent way. Conjunc-
tions in the antecedent of a minimal theory stand for complex causes of the factor
in the consequent, disjunctions for alternative causes. Hence, minimal theories are
directly causally interpretable. Moreover, minimal theories impose very specific
constraints on the behavior of the factors contained in them. For instance, (1) says
that whenever AC is instantiated, there also is an instance of B. That is, according
to (1) the coincidence ACB does not occur. Correspondingly, information about
occurring and non-occurring coincidences allows for conclusions as to the mini-
mal theory representing the underlying causal structure. If it is known that AC is
never realized in combination with B, while both ACB and ACB are observed,
it follows that AC is minimally sufficient for B. In this sense, minimal theories
constitute the link between the empirical behavior of the factors in an investigated
frame and the causal structure behind that behavior. The empirical behavior of the
factors allows for inferring minimal theories that describe that behavior, and these
minimal theories, in turn, are causally interpretable.
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# U L E

c1 1 1 1

c2 1 0 1

c3 0 1 1

c4 0 0 0
(a)

# U L E

c1 1 1 1

c2 1 1 0

c3 0 1 1

c4 1 0 1

c5 1 0 0

c6 0 1 0

c7 0 0 1

c8 0 0 0
(b)

# U L E

c1 1 1 1

c2 0 1 1

c3 1 0 1

c4 1 0 0

c5 0 1 0

c6 0 0 1

c7 0 0 0
(c)

# U L E

c1 1 1 1

c2 0 0 0
(d)

Table 1. Simple examples of coincidence lists as processed by CNA.

The inference procedure to be developed here operates on the same data as
QCA: coincidences of the factors involved in a causal process whose structure is
to be revealed. Accordingly, the procedure shall be termed coincidence analysis
or CNA for short.9 Contrary to QCA, however, the data fed into CNA are not
required to mark one factor as the effect or outcome. Based on its input data, CNA
simply determines for each factor Zi in the analyzed frame involving, say, n factors
which dependencies hold between Zi and the other n−1 factors in the frame. Most
of these dependencies will turn out not to be causally interpretable. The possibly
causally interpretable dependencies are then minimalized and expressed in terms
of minimal theories, which, finally, are straightforwardly causally interpretable as
shown above. Moreover, CNA does not require the n− 1 other factors to be inde-
pendent, i.e. to be co-instantiable in all 2n−1 logically possible combinations.

To illustrate the input data of CNA and to introduce its algorithmic steps, I shall
subsequently draw on hypothetical exemplary studies conducted to investigate the
causal dependencies among the following factors: ‘strong unions’ (abbreviated by
U ), ‘strong left parties’ (L), and ‘high overall level of education’ (E). Table 1
contrasts the data collected in four such hypothetical studies. As in case of QCA,
the data processed by CNA is listed analogously to truth tables. Tables as in 1 are
referred to as coincidence lists. The rows in a coincidence list report the different
types of cases observed in a respective study. The cases or rows are numbered by
c1, c2, etc. In coincidence lists a ‘1’ in the column of, say, factor U represents
an instance of U , i.e. a country that has strong unions, a ‘0’ in that same column
symbolizes the absence of such an instance, i.e. a country with weak unions.10

Columns of coincidence lists thus record instances and absences of the factor men-
tioned in the title row, while the rows following the title row specify coincidences
of the factors in the title row. For example, the first row of (a) records a country that
has strong unions, strong left parties, and a high overall level of education (ULE);
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the following row represents a country that has strong unions, weak left parties,
and a high level of education (ULE).

List (a) in table 1 clearly manifests dependencies among its factors. For in-
stance, there is no row in (a) featuring ULE. That is, relative to list (a), having
strong unions and strong left parties is sufficient for a high overall level of educa-
tion: UL → E. Likewise, there is no row in (a) featuring L in combination with
E, which amounts to the sufficiency of strong left parties for a high level of educa-
tion. The sufficient condition UL hence contains a sufficient proper part, L, and,
accordingly, is not minimally sufficient. Factor L, on the other hand, does not have
any sufficient proper parts and thus is minimally sufficient for E. Analogously it
can be shown that having weak left parties and a high level of education (LE) is
minimally sufficient for having strong unions (U ) in list (a). As will be shown
below, some of these dependencies are causally interpretable; others are not.

In contrast, list (b) contains all 8 logically possible configurations of the 3 fac-
tors in its frame. (b) is therefore referred to as a complete coincidence list. Com-
plete lists do not feature dependencies among their factors. Accordingly, complete
lists do not need to be analyzed for dependencies to begin with. Dependencies
emerge only in incomplete lists, i.e. in lists that feature less than 2n coincidences
of the n factors in their frame. Upon investigating processes with hard-to-control
causal backgrounds, however, all logically possible factor combinations are no rare
empirical result in scientific practice. In such cases, it is often possible to exclude
certain configurations as “don’t care” cases based on prior causal knowledge (cf.
Ragin 1987:113–118). Alternatively, significance levels may be introduced that
exclude rarely found configurations from consideration (cf. Ragin 2000:109–115).
Thus, several methodologies are available that reduce complete coincidence lists
such as to render them causally interpretable after all.

List (c) in table 1 can be seen as a reduction of (b) by one row. There is no row
in (c) representing a country that has both strong unions and strong left parties but
does not have a high level of education. That is, UL is minimally sufficient for E
relative to list (c). Finally, list (d) is incomplete as well. It is incomplete to such
an extent that too many dependencies emerge. According to list (d), every factor
is minimally sufficient and necessary for every other factor in the corresponding
frame. Such an abundance of dependencies is not causally interpretable, for causes
and effects cannot be distinguished. As the previous section has shown, if causal
dependencies are to be oriented on the basis of mere coincidence data—and not, as
in case ofQCA, by assumption (ICE)—, at least two alternative causes are required
for each effect. List (d) is a case of what Ragin calls limited diversity (cf. e.g. Ra-
gin 2000:139–141, 198–202). As in case of complete lists, prior causal knowledge
may provide a means to causally analyze data featuring limited diversity. Based on
such knowledge, lists as (d) may be supplemented by additional rows representing
coincidences that, notwithstanding the fact that they have not been observed in a
given study, are known to be empirically possible. Such methods of data adjust-
ment, however, are not going to be further discussed here.
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4. PRESUPPOSITIONS

While CNA dispenses with assumptions (SNG), (IND), and (ICE), it still rests
on two important presuppositions, both of which must be adopted, in one form or
another, by any procedure of causal reasoning: First, maximal causal interpretabil-
ity of empirical data is guaranteed only if that data are exhaustive, and, second,
the causal background against which empirical data are collected must be homo-
geneous. Let us take these presuppositions in turn.

Thoroughly uncovering a causal structure requires an exhaustive collection of
empirical data generated by that structure. Accordingly, probabilistic procedures
of causal reasoning, for example, presume the availability of probability distribu-
tions over all exogenous variables, or QCA relies on the realizability of all 2n

configurations of n investigated cause variables. Nonetheless, assumptions as re-
gards the exhaustiveness of empirical data are hardly ever made explicit in studies
on causal reasoning.11 Such an implicit taking for granted of the suitability of in-
put data, however, will not do for the present context. As the previous section has
shown, dependencies among n factors emerge only if not all 2n coincidences are
contained in an analyzed list. Of course, however, coincidences may be missing
from coincidence lists due not only to causal dependencies among respective fac-
tors. Exhaustive data collection may fail for a host of different reasons. Financial
or technical resources may happen to be limited in experimental sciences or na-
ture may be found not to provide sufficient data in non-experimental disciplines.
Inexhaustive data are likely to be one of the main reasons for hampered causal in-
terpretability of that data. Proper data collection, however, is not part of causal
reasoning, but a precondition thereof. That is why (PEX) is endorsed in the present
context, which is concerned with matters of causal reasoning only.

Principle of Empirical Exhaustiveness (PEX): CNA-processed data are ex-
haustive. That is, all coincidences of the analyzed factors that are compat-
ible with the causal structure regulating the behavior of these factors are
contained in a CNA-processed coincidence list.

(PEX) guarantees that whenever a coincidence is missing from a CNA-proc-
essed list, this is due to underlying causal dependencies. Clearly, (PEX) constitutes
a sweeping idealization with respect to data collection. Such an idealization, how-
ever, may prove to be useful in many practical contexts. It can be implemented as a
gauge by means of which concrete data collections can be measured and thus eval-
uated. For clearly, if there is reason to believe that a particular study did not collect
all the relevant data about an investigated structure and if there is no other source
available that supplements missing data, the pertaining structure simply cannot be
fully uncovered. Nonetheless, while (PEX) is a precondition of the maximal causal
interpretability of coincidence data, even inexhaustive data provide some informa-
tion as to underlying causal structures. For instance, in list (a) of table 1, factors
U and L are independent, i.e. all logically possible configurations of U and L are
exhibited in (a). This independence will remain unaltered irrespective of additional
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coincidences introduced into list (a) in the course of further data collection. Thus,
even if (a) violates (PEX), U and L can still be inferred to be causally indepen-
dent in the structure underlying the behavior of the factors in that list. Since we
are subsequently going to be concerned only with maximally causally analyzing
coincidence data, (PEX) shall be presumed in the following.12

Apart from (PEX), an application of CNA must assume that the causal back-
ground of an analyzed coincidence list is causally homogeneous, i.e. that the behav-
ior of the factors in the investigated frame is not confounded by causally relevant
factors not contained in the frame. Each analysis of a causal process is limited to
a small subset of all factors actually involved in that process. Causal processes are
extremely complex. Ordinarily, only a few factors are of interest in the course of a
concrete study. Therefore, a coincidence list over a frame consisting of Z1, . . . , Zn

must be assumed to be homogeneous with respect to confounders not contained
in {Z1, . . . , Zn}. Roughly, if Zn is an effect, a confounder of Zn is a sufficient
cause Xj of Zn such that Xj is located on a causal path leading to Zn that does
not contain any of the factors Z1, . . . , Zn−1. A confounder is a factor or a con-
junction of factors by means of which the investigated effect can be manipulated
independently of the factors in the frame.13

The notion of a confounder is to be understood relative to a corresponding
effect. Basically, any factor in an analyzed frame can be seen as effect of an un-
derlying structure. However, as will be shown below, there are several constraints
subject to which a factor can be excluded from the set W of potential effects prior to
causally analyzing a factor frame. Still, depending on the specificZi ∈W analyzed
in the course of a particular run of CNA, different factors are to be seen as con-
founders and, accordingly, must be homogenized. Generally: Input data processed
by CNA are assumed to be generated against causally homogeneous backgrounds
in the sense of (HC):14

Homogeneity (HC): The background of a causally analyzed list of m coin-
cidences over a factor frame containing the set W of potential effects is
causally homogeneous iff for every confounder Xj of every factor in W:
Xj is absent in the background of one coincidence iff Xj is absent in the
backgrounds of all other m− 1 coincidences.

While only homogeneous coincidence lists are causally analyzable, (HC) does
not guarantee the causal analyzability of coincidence lists. Rather, (HC) prevents
causal fallacies. Therefore, a coincidence list may well be homogeneous in terms of
(HC), even though confounders are instantiated in its background—as long as these
confounders are instantiated in the backgrounds of all coincidences. If confounders
are universally instantiated, effects will be present in all coincidences, irrespective
of whether the other factors in the frame are present or absent. In this case, no
dependencies emerge; thus, no inferences as to underlying causal structures are
drawn. As a consequence, no causal fallacies are committed either.

(HC) excludes a number of coincidence lists from causal analyzability. The
lists fed into CNA may well reveal certain backgrounds to be causally inhomoge-
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# U L E

c1 1 1 1

c2 1 0 1

c3 0 1 1

c4 1 1 0
(a)

# U L E

c1 1 0 0

c2 0 1 0

c3 0 0 1

c4 0 0 0
(b)

Table 2. Two coincidence lists that cannot be causally analyzed, for none of the in-
volved factors can be interpreted as effect of an underlying structure in accordance
with (HC).

neous. Consider, for instance, the lists in table 2 which are to be seen as reporting
the data collected by two further hypothetical studies investigating the causal de-
pendencies among ‘strong unions’ (U ), ‘strong left parties’ (L), and ‘high level of
education’ (E). Assume L to be an effect of the structure generating list (a) in table
2. A comparison of the cases c1 and c2 recorded in that list shows that, if L in fact
were the effect of the underlying structure, (a) would violate (HC). The only factor
varying in c1 and c2 is L; no other factor in the frame {U,L,E} is accountable for
that variation of L, therefore, it must be due to a varying confounder of L in the un-
known or unconsidered background of list (a). That means interpreting L in terms
of an effect contradicts the homogeneity assumption. If L is taken to be a cause
factor of the underlying structure, (HC) is not violated. Thus, assuming (HC) to
hold for list (a) implies that ‘strong left parties’ cannot be seen as a possible effect
or outcome. The same holds for the other two factors in {U,L,E}. In c1 and c3, U
is the only varying factor, while no other factor, apart from E, varies in c1 and c4.
Hence, there is no factor in list (a) that could possibly be an effect of an underlying
causal structure in accordance with (HC). Analogous considerations apply to list
(b). In c1 and c4 of that list, U is the only varying factor, c2 and c4 exclude L from
being interpretable as an effect, and c3 and c4 refuse E admittance into the set of
possible effects due to a violation of (HC).

That means there cannot be a causal structure underlying either list (a) or (b)
of table 2 that would be compatible with (HC). In neither list there is a factor
that could be seen as an effect in accordance with (HC), i.e. W = ∅. Whenever
for every factor Zi contained in the factor frame of a coincidence list C there are
two cases ck and cl in C such that Zi is the only factor varying in ck and cl, the
background against which the data in C are collected cannot be homogeneous, for
there is no causal structure that could possibly generate C and accord with (HC).
I shall in this context speak of inhomogeneous coincidence lists. (HC) excludes
all inhomogeneous coincidence lists from being processed by CNA.15 It must be
emphasized, however, that the homogeneity of coincidence lists is an assumption
to which every inference of CNA must be relativized. It might well be that a list
which is not inhomogeneous in the sense defined above, as e.g. list (a) in table 1,
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in fact is the result of an uncontrolled variation of background confounders. In
this sense, only a sufficient and no necessary condition for the inhomogeneity of a
coincidence list is given above. Causal inferences drawn by CNA will always be of
the form “Given that (HC) is satisfied, such and such must be the underlying causal
structure”. Homogeneity is never beyond doubt. Rather, depending on the design
of a concrete study, the homogeneity of collected data is more or less plausible.
The inferences drawn by CNA—or by any other procedure of causal reasoning—
are only as reliable as the unconfoundedness of analyzed data.

5. IDENTIFICATION OF POTENTIAL EFFECTS

After having clarified the presuppositions on which CNA rests, we now pro-
ceed to introduce its inference rules. As anticipated in the previous section, a first
algorithmic step consists of parsing through the factor frame of a coincidence list
in order to determine which of the factors could possibly operate as effects within
the causal structure to be uncovered. This step yields a set W of factors whose
dependencies on the other factors in the corresponding frame are then successively
determined by CNA. The identification of potential effects shall not be considered
a proper part of CNA, for any sort of context-dependent empirical information or
even prior causal knowledge is allowed to enter the determination of W. For in-
stance, if a factor Zi is generally instantiated temporally before every other factor
in an analyzed frame {Z1, . . . , Zn}, Zi cannot function as an effect within the un-
derlying structure. Or prior causal knowledge could be available that establishes
the members of a proper subset of {Z1, . . . , Zn} as root factors, i.e. as factors that
are causes, but no effects within an investigated structure. In both cases there is
no need to integrate respective factors in W. CNA does not have to evaluate de-
pendencies among factors that can be excluded from the set of potential effects to
begin with. These pragmatic constraints are not systematizable, or, at least, a sys-
tematization shall not be attempted here. Accordingly, no recursively applicable or
computable rule can be provided, which essentially is why the determination of W
is not seen as a proper part of CNA.

Still, the determination of W is not only regulated by spatiotemporal peculiari-
ties of an analyzed process or by prior causal knowledge. As the previous section
has shown, factors can be excluded from the set of potential effects based on ho-
mogeneity considerations: For a factor Zi to be a potential effect, it must not be
the case that the corresponding coincidence list reports two cases such that Zi is
the only varying factor in those cases.

These considerations yield the following standard as regards the determination
of W. To indicate that the non-computable identification of the set of potential
effects is a precondition of launching CNA, yet not a proper part thereof, it shall
be referred to as “step 0*”.
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Step 0* – Identification of potential effects: Given a coincidence list C over a
factor frame {Z1, . . . , Zn}, identify the subset W ⊆ {Z1, . . . , Zn} such that
for every Zi: Zi ∈W iff

(1) The totality of available information as to the spatiotemporal ordering
of the instances of the factors in {Z1, . . . , Zn} and the available prior
causal knowledge about the behavior of the factors in {Z1, . . . , Zn}
does not preclude Zi to be an effect of the underlying causal structure.

(2) C does not report two cases ck and cl such that Zi is the only factor
varying in ck and cl.

6. IDENTIFICATION AND MINIMALIZATION OF SUFFICIENT
CONDITIONS

After identifying a non-empty set of potential effects, CNA proper sets in. In
a first stage, sufficient conditions for each member of W are identified and mini-
malized. To illustrate this first stage, let us expand the factor frame we considered
in previous sections by two factors such that we now investigate the causal de-
pendencies subsisting among the following five factors: ‘strong unions’ (U ), ‘high
income disparity’ (D), ‘strong left parties’ (L), ‘high GNP’ (G), ‘high overall level
of education’ (E). Assume that we have no prior causal knowledge about the struc-
turing of the dependencies among these factors. Thus, prima facie, every factor in
the frame {U,D,L,G,E} can function as a cause or an effect of the underlying
structure. Moreover, no factors in our exemplary frame shall be excluded from
effect position by additional information as to the spatiotemporal ordering of their
instances. Suppose that in this epistemic situation a study is conducted to the effect
that each country included in the study instantiates one of the eight cases listed in
table 3. Our hypothetical study, hence, shall be assumed to yield the data listed in
table 3.

case #
(strong unions)

U
(income disparity)

D
(strong left)

L
(high GNP)

G
(high education)

E

c1 1 1 1 1 1

c2 1 1 1 0 1

c3 1 0 1 1 1

c4 1 0 1 0 1

c5 0 1 1 1 1

c6 0 1 1 0 1

c7 0 0 0 1 1

c8 0 0 0 0 0

Table 3. Exemplary coincidence list to be analyzed by CNA.
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For reasons of compatibility with (HC), ‘strong unions’, ‘high income dispar-
ity’, and ‘high GNP’ can be excluded from the set W of potential effects. For
each of these factors there is a pair of cases in table 3—〈c1, c5〉 for U , 〈c1, c3〉
for D, 〈c1, c2〉 for G—such that the respective factor is the only varying factor.
In consequence, interpreting one of these factors to be an effect of the underlying
structure would contradict CNA’s homogeneity assumption. ‘Strong left parties’
and ‘high level of education’ thus are the only potential effects of the structure gen-
erating table 3, i.e. W = {L,E}. For each of the factors in W minimally sufficient
conditions are now identified. This is done in four steps: (1) a factor Zi ∈W is se-
lected, (2) sufficient conditions of Zi are identified, (3) these sufficient conditions
are minimalized, and (4) the procedure is restarted at (1) by selecting another Zj ∈
W, until all factors in W have been selected. Let us take these steps in turn.

Step 1 – Selection of a potential effect: Randomly select one factorZi ∈W such
that Zi has not been selected in a previous run of steps 1 to 4. Zi is termed
effect∗, the factors in {Z1, . . . , Zi−1, Zi+1, . . . , Zn} are referred to as resid-
uals.16

Step 2 – Identification of sufficient conditions: Identify all sufficient conditions
of the effect∗ Zi according to the following rule:

(SUF) A coincidence Xk of residuals is sufficient for Zi iff the input list C
contains at least one row featuring XkZi and no row featuring XkZi.

The order of selecting effects∗ in step 1 does not matter, as long as it is guar-
anteed that, eventually, all members of W are selected. According to (SUF), a
coincidence of residuals can be sufficient for an effect∗ only if it is instantiated
at least once. Moreover, a coincidence of residuals contained in the input list is
not sufficient for a selected effect∗ if it is also instantiated in combination with the
absence of that effect∗.

Let us perform these two steps on our example of table 3 by first selecting
‘strong left parties’ (L) as effect∗. Step 2 identifies six sufficient conditions of L,
i.e. there are six coincidences of residuals that conform to (SUF):UDGE,UDGE,
UDGE, UDGE, UDGE, UDGE. The case c1 in the first row of table 3 features
the coincidence UDGE in combination with L, and there is no row in table 3 that
features UDGE in combination with L. UDGE, thus, is a sufficient condition
of L according to (SUF). Analogous considerations apply to the other sufficient
conditions mentioned above: c2 is constituted by UDGE, c3 by UDGE, c4 by
UDGE, c5 by UDGE, and c6 features UDGE without either of these conditions
being contained in combination with L in table 3. Thus, each coincidence of resid-
uals listed in the six cases featuring an instance of ‘strong left parties’ constitutes
a sufficient condition of that factor.

Before sufficient conditions of the remaining effect∗ E are identified, we pro-
ceed to minimalize the sufficient conditions of L.
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Step 3 – Minimalization of sufficient conditions: The sufficient conditions of
Zi identified in step 2 are minimalized according to the following rule:

(MSUF) A sufficient condition Z1Z2 . . . Zh of Zi is minimally sufficient iff nei-
ther Z2Z3 . . . Zh nor Z1Z3 . . . Zh nor . . . nor Z1Z2 . . . Zh−1 are suffi-
cient for Zi according to (SUF).

Or operationally put:

(MSUF’) Given a sufficient condition Z1Z2 . . . Zh of Zi, for every Zg ∈
{Z1, Z2, . . . , Zh}, h ≥ g ≥ 1, and every h-tuple 〈Z1′ , Z2′ , . . . , Zh′〉
which is a permutation of the h-tuple 〈Z1, Z2, . . . , Zh〉: Eliminate
Zg from Z1Z2 . . . Zh and check whether Z1 . . . Zg−1Zg+1 . . . ZhZi

is contained in a row of C. If that is the case, re-add Zg to
Z1 . . . Zg−1Zg+1 . . . Zh and eliminate Zg+1; if that is not the case, pro-
ceed to eliminate Zg+1 without re-adding Zg. The result of performing
this redundancy check on every factor contained in Z1Z2 . . . Zh is a
set of minimally sufficient conditions of Zi.

(MSUF) is nothing but an adaptation of the notion of a minimally sufficient con-
dition as defined in section 2 to the context of coincidence lists. (MSUF’), in turn,
can be seen as an operational expression of the analysans of the notion of a mini-
mally sufficient condition implemented in (MSUF). That means (MSUF) might be
rephrased as follows: A sufficient condition Z1Z2 . . . Zh of Zi is minimally suffi-
cient iff it results from an application of (MSUF’). At the price of high computa-
tional complexity, the formulation of (MSUF’) is kept as simple as possible above.
The order in which factors are eliminated from sufficient conditions matters as to
the minimalization of such conditions—thus the systematic permutation of elimi-
nation orders.17 In many cases, however, it is not necessary to completely perform
that permutation. For instance, if an h-tuple T1 = 〈Z1, . . . , Zd, Zd+1, . . . , Zh〉 has
been minimalized by means of (MSUF’) up to element Zd, that minimalization of
T1 can be taken over for all h-tuples T2 = 〈Z1, . . . , Zd, Zd+1′ , . . . , Zh′〉 that coin-
cide with T1 up to element Zd without reapplying (MSUF’) to T2. Or suppose it
has been found thatX1 = Z1 . . . Zd is a minimally sufficient condition of an inves-
tigated effect, and a sufficient condition X2 = Z1Z2 . . . Zh containing Z1 . . . Zd is
to be minimalized by means of (MSUF’). In that case, it is not effective to mini-
malize X2 by first eliminating the factors not contained in X1, for this elimination
order would just yield X1 again.

Further optimizations of (MSUF’) are conceivable but will not be discussed
here. More importantly, the intuition behind (MSUF’) can be more colloquially
captured: Every factor contained in a sufficient condition of Zi is to be tested
for redundancy by eliminating it from that condition and checking whether the
remaining condition still is sufficient for Zi or not. A sufficient condition of Zi is
minimally sufficient iff every elimination of a factor from that condition results in
the insufficiency of the remaining condition.
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Performing step 3 on our exemplary table is straightforward. Step 2 yielded six
sufficient conditions of ‘strong left parties’ (L). For simplicity’s sake, I illustrate
the minimalization of these six conditions by means of only two examples. First,
take UDGE. That this sufficient condition is not minimally sufficient for L is seen
by removing, say,G and finding that UDE itself is sufficient for L, for table 3 does
not contain a row featuring UDE in combination with L. UDE still is not mini-
mally sufficient. For instance, both D and E can be removed without sufficiency
being lost. Table 3 does not report a case featuring UL, which induces that ‘strong
unions’ (U ) is sufficient and, since it is a single factor that does not contain proper
parts, minimally sufficient for ‘strong left parties’ (L). There are other ways to
further minimalize UDE: A removal of U and E still yields a sufficient condition
of L. Table 3 does not contain a row featuring DL. Therefore, ‘high income dis-
parity’ (D) is minimally sufficient for L. Second, let us look at the next sufficient
condition of L identified by (SUF). UDGE is not minimally sufficient because
UD can be removed without sufficiency for L being lost. There is no row in 3
featuring GE and L, which induces that GE is sufficient for L. If GE is further
reduced, sufficiency is lost. c7 features EL and c8 GL, which amounts to neither
E nor G being sufficient for L. ‘Low GNP’ & ‘high level of education’ (GE),
hence, is minimally sufficient for ‘strong left parties’ (L). Minimalizing the other
sufficient conditions of L by analogously implementing (MSUF’) does not yield
any further minimally sufficient conditions. All in all, therefore, applying step 3 to
our exemplary table 3 generates the following three minimally sufficient conditions
of ’strong left parties’: ‘Strong unions’ (U ), ‘high income disparity’ (D), and ‘low
GNP’ & ‘high level of education’ (GE).

After having identified the minimally sufficient conditions of a first factor
Zi ∈W, the same needs to be done for all other effects∗. We thus need a loop
that brings CNA back to step 1, if not all factors in W have been assigned mini-
mally sufficient conditions yet.

Step 4 – (MSUF)-Loop: If all Zi ∈W have been selected as effects∗, proceed to
step 5; otherwise go back to step 1.

Applying this loop to our example yields seven sufficient conditions of ‘high level
of education’ (E). Each row featuring E comprises a sufficient condition of resid-
uals: UDLG, UDLG, UDLG, UDLG, UDLG, UDLG, UDLG. For exam-
ple, c2 of table 3 is constituted by UDLG and there is no row featuring UDLG
along with E, or c3 comprises UDLG and no row contains UDLG in combina-
tion with E. The sufficiency of the other conditions is analogously demonstrated.
Employing (MSUF) or (MSUF’) to minimalize these conditions brings forth four
minimally sufficient conditions of ‘high level of education’: ‘strong unions’ (U ),
‘high income disparity’ (D), ‘strong left parties’ (L), and ‘high GNP’ (G). The list
in table 3 contains no rows featuring either UE, DE, LE, or GE.

As an overall result of performing the first stage (steps 1 to 4) of CNA on
our exemplary study, we have thus identified the following minimally sufficient
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conditions of the factors in W:
U,D,GE for L,

U,D,L,G for E.

Before we move on, emphasis must be put on a major difference between
QCA and CNA that becomes apparent at this point. By presupposing that po-
tential causes of an investigated structure are independent (IND), and thus are co-
instantiable in all logically possible combinations, QCA can draw on the well-
known Quine-McCluskey optimization of truth functions in order to minimalize
sufficient conditions (cf. Quine 1952, 1959). As soon as (IND) is dropped, how-
ever, Quine-McCluskey optimization no longer eliminates all redundancies. Our
exemplary coincidence list in table 3 features a dependency among U ∨ D and
L. There is no row in table 3 reporting a coincidence of, say, U and L. Yet,
Quine-McCluskey optimization only eliminates redundant conjuncts of sufficient
conditions if a respective truth table contains two rows which differ only with re-
spect to presence and absence of that conjunct. Thus, minimalizing the sufficient
conditions of E in table 3 along the lines of Quine-McCluskey would not iden-
tify, say, U as minimally sufficient condition of E, notwithstanding the fact that
table 3 does not contain a coincidence of U and E. Rendering coincidence lists
generated by complex causal structures amenable to a Boolean analysis, accord-
ingly, calls for a custom-built minimalization procedure that differs from a standard
Quine-McCluskey optimization insofar as it systematically tests conjuncts Zg of a
sufficient condition Xi for eliminability, irrespective of whether the corresponding
coincidence list contains another sufficient condition Xj that only differs from Xi

with respect to presence and absence of Zg.

7. IDENTIFICATION AND MINIMALIZATION OF NECESSARY
CONDITIONS

As the famous Manchester Hooters counterexample against Mackie’s (1974)
INUS-theory of causation18 demonstrates and as articulated in the analysis of
causal relevance given in section 2, minimally sufficient conditions are not gener-
ally causally interpretable. Only minimally sufficient conditions that are moreover
non-redundant parts of minimally necessary conditions are amenable to a causal
interpretation. After having identified minimally sufficient conditions, we thus
now proceed to first form necessary conditions of the effects∗ from their mini-
mally sufficient conditions and then remove redundancies from these necessary
conditions. Since factor frames processed by CNA are incomplete with respect to
underlying causal structures, i.e. there supposedly will always be many causally
relevant factors not contained in input lists, effects∗ can only be assigned necessary
conditions relative to the homogeneous backgrounds of corresponding coincidence
lists. This is easily accomplished by disjunctively combining the minimally suf-
ficient conditions of each effect∗. In this way, we get one necessary condition
relative to an input list C and its background for each factor Zi ∈W.
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Step 5 – Identification of necessary conditions: Identify a necessary condition
of each effect∗ Zi by disjunctively concatenating Zi’s minimally sufficient
conditions according to the following rule:

(NEC) A disjunctionX1∨X2∨ . . .∨Xh of minimally sufficient conditions of
Zi is necessary for Zi iff C contains no row featuring Zi in combination
with ¬(X1 ∨X2 ∨ . . . ∨Xh), i.e. no row comprising X1X2 . . . XhZi.

Performed on our example, step 5 issues U ∨ D ∨ GE and U ∨ D ∨ L ∨ G
as necessary conditions of L and E, respectively. That means there is no row in
table 3 featuring L in combination with neither U nor D nor GE. Every country
included in our hypothetical study that has strong left parties also exhibits one of
L’s minimally sufficient conditions. Similarly for E: No row of table 3 records
a coincidence of E with neither an instance of U nor D nor L nor G. Whenever
a country in our study has a high level of education, it also features one of E’s
minimally sufficient conditions.

Such as to determine whether the minimally sufficient conditions assigned to
the effects∗ at the end of the previous section in fact are non-redundant parts of
necessary conditions, these necessary conditions have to be minimalized.

Step 6 – Minimalization of necessary conditions: The necessary conditions of
every Zi ∈W identified in step 5 are minimalized according to the following
rule:

(MNEC) A necessary conditionX1∨X2∨ . . .∨Xh of Zi is minimally necessary
iff neither X2 ∨X3 ∨ . . . Xh nor X1 ∨X3 ∨ . . . Xh nor . . . nor X1 ∨
X2 ∨ . . . ∨Xh−1 is necessary for Zi according to (NEC).

Or operationally put:

(MNEC’) Given a necessary condition X1 ∨X2 ∨ . . .∨Xh of Zi, for every Xg ∈
{X1, X2, . . . , Xh}, h ≥ g ≥ 1, and every h-tuple 〈X1′ , X2′ , . . . , Xh′〉
which is a permutation of the h-tuple 〈X1, X2, . . . , Xh〉: Eliminate Xg

fromX1∨X2∨. . .∨Xh and check whether there is a row in C featuring
Zi in combination with ¬(X1 ∨ . . . ∨Xg−1 ∨Xg+1 ∨ . . . ∨Xh), i.e. a
row comprising X1 . . . Xg−1Xg+1 . . . XhZi. If that is the case, re-add
Xg to X1 ∨ . . . ∨ Xg−1 ∨ Xg+1 ∨ . . . ∨ Xh and eliminate Xg+1; if
that is not the case, proceed to eliminate Xg+1 without re-adding Xg.
The result of performing this redundancy check on every minimally
sufficient condition contained inX1∨X2∨. . .∨Xh is a set of minimally
necessary conditions of Zi.

In analogy to (MSUF), (MNEC) is nothing but an adaptation of the notion of
a minimally necessary condition as defined in section 2 to the context of coin-
cidence lists. (MNEC’), in turn, can be seen as an operational expression of
the analysans of the notion of a minimally necessary condition implemented in
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(MNEC). That means (MNEC) might be rephrased as follows: A necessary condi-
tion X1 ∨X2 ∨ . . .∨Xh is minimally necessary iff it results from an application of
(MNEC’). The formulation of (MNEC’) has been kept as simple as possible at the
expense of its computational complexity. Analogous optimizations as in case of
(MSUF’) (cf. p. 15 above) are possible with respect to (MNEC’). The intuition be-
hind (MNEC’) can also be more colloquially captured: Every minimally sufficient
condition contained in a necessary condition of Zi is to be tested for redundancy by
eliminating it from that condition and checking whether the remaining condition
still is necessary for Zi. A necessary condition of Zi is minimally necessary iff ev-
ery elimination of a minimally sufficient condition from that necessary condition
results in the loss of necessity of the remaining condition.

Let us illustrate step 6 by first performing it on the necessary condition U∨D∨
GE of L. That disjunction is not minimally necessary for L because it contains
a necessary proper part: U ∨ D. Every country with strong left parties included
in the study behind table 3 has either strong unions or a high income disparity.
Table 3 does not contain a row featuring UDL. GE does not amount to a non-
redundant part of a minimally necessary condition, for wheneverGE is instantiated
in combination with L, there also is an instance of U ∨D. The same results from
applying (MNEC’) to U ∨ D ∨ GE. When eliminating U , we find that the rest
is no longer necessary for L, because c3 of table 3 features DGE and L, or more
specifically DGE and L. Hence, U is re-added. The same is found after removing
D. c5 features UGE and L or UGE and L, respectively. Removing GE, however,
does not result in a loss of necessity. Therefore,GE is not re-added. U∨D∨L∨G
does not amount to a minimally necessary condition of E either. U ∨D ∨ L ∨ G
contains not only one but two necessary proper parts: L∨G and U ∨D∨G. There
is no row in table 3 featuring LGE or UDGE. Every country in our exemplary
study that has a high level of education also features an instance of L ∨ G and
one of U ∨ D ∨ G. These two ways to minimalize U ∨ D ∨ L ∨ G stem from
the fact that there are dependencies among the minimally sufficient conditions of
E. Within the homogeneous background of table 3, L is instantiated if and only
if U ∨D is instantiated. All in all, therefore, we get the following minimally
necessary conditions for our example:

U ∨D for L,

L ∨G and U ∨D ∨G for E.

8. FRAMING MINIMAL THEORIES AND CAUSAL
INTERPRETATION

Step 6 of CNA yields a set of minimally necessary disjunctions of minimally
sufficient conditions for each Zi ∈W. We have thus come close to assigning min-
imal theories to the data of our hypothetical study. The result of step 6 allows for
framing one simple minimal theory for ‘strong left parties’ and two for ‘high level
of education’. Relative to the background of table 3, these minimal theories can be
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strong unions (U)

strong left parties (L)

high level of

education (E)

high income

disparity (D)

high GNP (G)

(a)

strong unions (U)

strong left parties (L) high level of

education (E)

high income

disparity (D) high GNP (G)

(b)

Figure 2. Two complex structures one of which underlies the coincidences in table
3.

straightforwardly expressed as follows: U∨D ⇒ L, U∨D∨G⇒ E, L∨G⇒ E.
However, apart from the specific causal background of the particular study repre-
sented in table 3, it must not be the case that U and D are themselves sufficient
for L or L and G for E. Moreover, there may well be further minimally sufficient
conditions of both ‘strong left parties’ and ‘high level of education’. Therefore,
suspending the relativization to the background of table 3 and expressing these
dependencies in their general and background-independent form leads to:

UX1 ∨DX2 ∨ YL ⇒ L (5)

UX1 ∨DX2 ∨GX3 ∨ YE ⇒ E (6)

LX1 ∨GX2 ∨ YE ⇒ E (7)

L andE have a non-empty intersection of minimally sufficient conditions. Cor-
respondingly, the simple minimal theories of L and E have certain factors in com-
mon. The causal structure regulating E is not independent of the structure behind
L. The behavior of the factors in table 3, thus, is regulated by a complex structure.
To determine what that structure looks like, the simple minimal theories of L and
E are to be conjunctively combined to form a complex theory. Here an ambiguity
emerges: (6) and (7)—if causally interpreted—identify different direct causal rel-
evancies for E. While according to (6) U and D are directly causally relevant to
E, (7) instead holds L to be directly relevant to E. The coincidences in table 3 are
either generated by a causal chain such that U and D are parts of alternative causes
of L while L and G are contained in alternative causes of E, or they are generated
by a common cause structure such that U andD are parts of alternative causes of L
while U , D, and G are contained in alternative causes of E. The two causal struc-
tures possibly underlying table 3 are graphed in figure 2. Thus, the minimalization
of E’s necessary condition is ambiguous.19

The data listed in table 3 alone do not determine whether the interplay of
‘strong unions’, ‘high income disparity’, ‘strong left parties’, ‘high GNP’, and
‘high level of education’ is regulated by a chain or a common cause structure. If
no prior causal knowledge about the structure under investigation is at hand that
disambiguates the inference, a disambiguation has to await further study, i.e. ex-
pansions of the factor frame and a corresponding collection of additional data. For
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instance, if a follow-up study reveals a country that has strong left parties and a low
level of education, the structure behind list 3 can unambiguously be identified as a
common cause structure. As has been widely recognized and explored in the lit-
erature concerned with probabilistic causal reasoning, ambiguities with respect to
the causal interpretation of empirical data constitute a very common phenomenon
in causal reasoning.20 I systematically investigate the ambiguities that may arise in
the course of Boolean causal reasoning in Baumgartner (2008a).

To capture ambiguities of this kind, CNA cannot assign one single minimal
theory to our exemplary data. Rather, in order for a Boolean methodology to be
adequate it must assign a set of minimal theories to its input data, all of which could
represent the causal structure that in fact accounts for the data. Therefore, the re-
maining step of CNA frames all minimal theories that can be constructed from the
inventory of minimally necessary disjunctions of minimally sufficient conditions
identified for each Zi ∈ W in step 6. This is done by means of a twofold pro-
cedure: First, simple minimal theories are formed for each Zi ∈ W, and second,
if the minimal theories Φ and Ψ of two different factors in W have a non-empty
intersection of factors, Φ and Ψ are combined to form the complex minimal theory
Φ ∧ Ψ, such that Φ ∧ Ψ conforms to the requirements imposed on the notion of a
complex minimal theory in section 2.

Step 7 – Framing minimal theories: The minimally necessary disjunctions of
minimally sufficient conditions of each Zi ∈ W identified in step 6 are
assembled to minimal theories as follows:

(1) For each Zi ∈W and each minimally necessary disjunction X1∨X2∨
. . . ∨ Xh, h ≥ 2,21 of minimally sufficient conditions of Zi: Form a
simple minimal theory Ψ of Zi by making X1 ∨ X2 ∨ . . . ∨ Xh the
antecedent of a double-conditional and Zi its consequent: X1 ∨X2 ∨
. . . ∨Xh ⇒ Zi.

(2) Conjunctively combine two simple minimal theories Φ and Ψ to the
complex minimal theory Φ ∧ Ψ iff Φ and Ψ conform to the following
conditions:
(a) at least one factor in Φ is part of Ψ;
(b) Φ and Ψ do not have an identical consequent.

Applied to our exemplary study, step 7 frames the minimal theories (8) and (9),
which are given both in background dependent and independent form below. (8)
represents the chain (a) of figure 2, while (9) stands for the common cause structure
(b).

(U ∨D ⇒ L) ∧ (L ∨G⇒ E)
(UX1∨DX2∨YL⇒L)∧(LX3∨GX4∨YE⇒E)

(8)

(U ∨D ⇒ L) ∧ (U ∨D ∨G⇒ E)
(UX1∨DX2∨YL⇒L)∧(UX1X3∨DX2X3∨YLX3∨GX4∨YE⇒E)

(9)

After having assigned a set of minimal theories to a coincidence list, the by
far most intricate hurdles on the way to a causal analysis of table 3 have been
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overcome. As we have seen in section 2, there exists a straightforward syntacti-
cal convention as regards the causal interpretation of minimal theories. Minimal
theories render causal structures syntactically transparent:

Step 8* – Causal interpretation: Disjuncts in the antecedents of simple minimal
theories are to be interpreted as alternative (complex) causes of the factor
in the consequent. Conjuncts constituting such disjuncts correspond to non-
redundant parts of complex causes. Triples of factors 〈Zh, Zi, Zj〉, such that
Zh appears in the antecedent of a minimal theory of Zi and Zi is part of a
minimal theory of Zj , are to be interpreted as causal chains.

This interpretation rule is not to be seen as part of CNA proper. Nonetheless, it
fulfills an essential function on the way to a causal inference. For this reason, the
rule concerning causal interpretation is starred.

All in all, CNA thus determines the coincidences in our exemplary data table
3 to be the result of the causal chain represented by graph (a) of figure 2 or of the
common cause structure (b). Steps 0* to 7 assign a set of minimal theories to a
coincidence list and step 8* causally interprets these theories.

9. SUMMARY

This paper introduced a procedure of causal reasoning that is embedded in a
regularity theoretic framework and implements mainly Boolean techniques. Co-
incidence analysis (CNA) differs from QCA essentially in three respects: First,
CNA does not assume that there is exactly one effect in every causally analyzed
factor frame, second, CNA does not presuppose the mutual independence of the
causes of that effect, and third, as to CNA it must not be known prior to applying
CNA what factor within the analyzed frame is the effect and, accordingly, what
factors are possible causes. Thus, CNA abandons the three QCA-assumptions
(SNG), (IND), and (ICE). It has been shown that these causal assumptions made in
the context ofQCA are dispensable for a successful causal analysis of coincidence
information. Thus, homogeneity (HC) turns out to be the only causal assumption
needed for causal reasoning based on pure coincidence data; and contrary to (SNG),
(IND), and (ICE), (HC) is not a causal assumption about the very structure under
investigation, but about the latter’s causal background.

As an immediate consequence thereof, CNA is not limited to uncovering causal
structures layer by layer. While QCA is only applicable provided that prior causal
knowledge separates analyzed factor frames in a subset consisting of causally in-
dependent (possible) cause factors and a subset consisting of a single effect, CNA
is applicable even without any prior causal knowledge concerning the underlying
structure. CNA is capable of analyzing causal structures from scratch and in their
whole complexity. Due to limited space, of course, the one example discussed here
is simple and designed in such a way that the performance of CNA with respect to
complex causal structures that are critical for QCA becomes transparent. In prin-
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ciple, however, CNA is capable of analyzing structures of arbitrary complexity.
Considerably more complex examples can be found in Baumgartner (2006).

Apart from generalizing QCA, CNA fills a gap left open by the probabilis-
tic algorithms of causal reasoning as presented in Spirtes, Glymour, and Scheines
(2000). These algorithms only generate informative outputs provided that analyzed
conditional probabilities are lower than 1, i.e. provided that causes do not in a strict
sense determine their effects. CNA, in contrast, is custom-built for deterministic
causal dependencies and properly uncovers such dependencies.

As shown in sections 3 and 4, not every coincidence list is causally analyzable.
Accordingly, CNA cannot be seen as a complete inference procedure in the sense
that it assigns a causal structure to a coincidence list whenever the coincidences in
that list are in fact the result of such a structure. Empirical data may be insuffi-
cient to uncover causal regularities. However, CNA is a correct causal inference
procedure in the sense that whenever CNA assigns a set of causal structures to a
coincidence list, that list is in fact generated by a member of that set. CNA assigns
sets of minimal theories and thereby sets of causal structures to every causally
interpretable coincidence list.

Notes
1In fact, Ragin explicitly tailors his notion of causal complexity to these limitations on QCA-

processable complexity. He defines causal complexity as “a situation in which a given outcome
may follow from several different combinations of causal conditions” (2008:124), similarly in Ragin
(1987:23–26). Plainly, as we shall see below, this is a rather sweeping simplification of the actual
complexity of real-life causal structures.

2It shall not be claimed that these 3 assumptions are logically independent. They are just labeled
here for the purpose of easy reference later on. Moreover, it must be pointed out that (SNG), (IND)
and (ICE) are not explicitly assumed in the context of QCA, rather they are implicitly taken for
granted.

3Cf. also Quine (1952) and Quine (1959).
4For details on the theoretical background resorted to here see Graßhoff and May (2001), Baum-

gartner and Graßhoff (2004), and Baumgartner (2008b).
5That means the procedure developed in this paper is custom-built for causal structures featuring

binary variables. This restriction primarily serves conceptual simplicity, as it allows for a straight-
forward implementation of Boolean optimization techniques. In consequence, structures involving
multi-valued variables must be encoded in binary terms before they can be treated by the procedure
introduced here. For quite some time, however, there have been considerable efforts in the literature
on logic synthesis to generalize Boolean optimization procedures for systems involving multi-valued
variables (cf. e.g. Mirsalehi and Gaylord 1986, or Sasao 1999, ch. 10). Hence, there seem to be
no principled obstacles to generalizing the procedure introduced here for multi-valued variables as
well—possibly by suitably adapting the ideas of Cronqvist and Berg-Schlosser (2008).

6Coincidences correspond to what Ragin (1987) calls configurations.
7QCA does not face the problem of the orientation of causal dependencies, for applying QCA

is taken to be possible only after the effect has been identified within the analyzed factor frame (cf.
ICE). However, as (ICE) shall be given up here, a way to orient causal dependencies is needed.

8The first constraint guarantees that complex minimal theories represent cohering causal struc-
tures, and the second restriction prohibits the conjunctive concatenation of equivalent minimal theo-
ries and thus excludes redundancies.
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9Coincidence analysis is not abbreviated as “CA” because, in the social science literature, this
acronym is often used for correspondence analysis which must not be confused with coincidence
analysis.

10I shall in the present context sidestep the problems that inevitably arise when it comes to cate-
gorizing countries into e.g. the ones with strong and the ones with weak unions. The problems of
attributing vague or fuzzy properties are extensively addressed in Ragin (2000, 2008).

11One exception is Ragin (1987, 2000, 2008). He discusses at length how insufficiently diverse
data negatively affect causal reasoning.

12I address the problems arising from violations of (PEX) in Baumgartner (2008c).
13For more details on the notion of a confounder needed for the purposes of CNA cf. Baumgartner

(2008c).
14Ragin is rather vague about the details of the homogeneity assumption adopted by QCA. Ragin

et. al. (1996), for instance, stipulate that causal data analysis presupposes that “the cases at the start
of an investigation are in fact alike enough to permit comparisons” (752). (HC) can be seen as an
attempt to make more precise what “alike enough to permit comparisons” means in the context of
Boolean causal reasoning.

15In a way, QCA is more permissive with respect to the causal analyzability of inhomogeneous
lists. If prior causal knowledge is available that excludes (at least) one case ci recorded in an inho-
mogeneous list from consideration—say, because it is known that a causal structure is operating in
ci that differs from the structure under investigation such that ci is explained away—, QCA could
be applied to inhomogeneous lists. Since one of the main motivations behind CNA is to minimize
the amount of prior causal knowledge needed to causally interpret small-N data, invoking such data
adjustments in order to analyze inhomogeneous lists by CNA is uncalled for.

16Selected factors are labeled effects∗ to indicate that they possibly are the effects of the structure
generating the input list. Effects∗ do not necessarily turn out to be (actual) effects of the underlying
structure at the end of a CNA-analysis. For instance, the set of effects∗ contained in list (d) of table
1 contains all factors in the frame—provided no further information is available that distinguishes
among causes and effects. Yet, none of these effects∗ is identified as actual effect by CNA.

17This is an important deviation from the minimalization of sufficient conditions as performed by
QCA. In the vein of the Quine-McCluskey optimization of truth functions QCA only eliminates
conjuncts of a sufficient condition if the latter reduced by the respective conjunct is actually con-
tained in the coincidence list. As will be shown below, this restriction is a serious limitation of the
minimizability of sufficient conditions involved in complex causal structures.

18Cf. Mackie (1974), Baumgartner and Graßhoff (2004), ch. 5
19That the minimalization of necessary conditions can be ambiguous is not taken into account

in the context of QCA. In Ragin (1987, 2000, 2008) the minimalization of necessary conditions
is assumed to be unproblematic. For another ambiguity with respect to minimalizing necessary
conditions cf. Quine (1959) and Kim (1993).

20Cf. e.g. Frydenberg (1990), Verma and Pearl (1991), or Spirtes et al. (2000).
21The constraint as to a minimum of two alternative minimally sufficient conditions for each

effect∗ does justice to the minimal complexity of a causal structure required such that its direction is
identifiable (cf. section 2).
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