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Abstract

This paper addresses a problem that arises when it comes to inferring deterministic causal
chains from pertaining empirical data. It will be shown that to every deterministic chain
there exists an empirically equivalent common cause structure. Thus, our overall convic-
tion that deterministic chains are one of the most ubiquitous (macroscopic) causal struc-
tures is underdetermined by empirical data. It will be argued that even though the chain
and its associated common cause model are empirically equivalent there exists an impor-
tant asymmetry between the two models with respect to model expansions. This asymme-
try might constitute a basis on which to disambiguate corresponding causal inferences on
non-empirical grounds.

1 Introduction

No later than Frydenberg (1990), Verma and Pearl (1991), and Spirtes, Glymour,
and Scheines (2000 (1993)) the fact that empirical data often considerably under-
determines causal inferences – especially when it comes to inferences to complex
causal structures – has become a widely recognized and investigated problem in
the literature on (algorithmic) causal reasoning. All of these studies endorse a the-
oretical framework according to which causal structures can be analyzed in terms
of Bayesian networks.1 This framework has meanwhile become the dominant ap-
proach to algorithmic causal reasoning in the philosophical literature. Algorithms
designed to discover causal Bayesian networks – henceforth BN-algorithms, for
short – analyze probabilistic input data, i.e. probability distributions that are, for
instance, acquired from frequency distributions. As section 2 is going to illustrate,
the mapping of causal structures to probability distributions is not generally unam-
biguous. In many cases more than one causal structure is assigned to one probabil-
ity distribution by BN-algorithms. Such ambiguities are not normally considered
to be particularly surprising or worrisome in the literature, for, clearly, the causal
inferences licensed by corresponding empirical data crucially hinges on the latter’s
quality, which in case of probabilistic data, as is well known, can be negatively
affected by ever so many factors. For instance, frequency distributions may feature
a considerable amount of confounding noise. As long as not all relevant factors
involved in an investigated causal structure are controlled for in the set-up of a per-
taining study, corresponding data tends to be confounded by hidden variables and

1 As regards the notion of a Bayesian network cf. e.g. Pearl (1985).
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is, hence, likely not to unambiguously reflect underlying causal structures. If am-
biguities in causal reasoning can at least partially be ascribed to confounding noise
in the data, the ambiguity ratio of a particular frequency distribution can simply be
understood as an indicator of how close the set-up behind a corresponding study
has come to an ideal noise-free set-up.

This raises the question as to whether it is possible to unambiguously infer
complex causal structures from data that has been collected against (idealized)
homogeneous causal backgrounds without confounding noise, i.e. from data that
directly exhibits deterministic dependencies among specific configurations of vari-
ables, or whether inferences to causal structures – both of the probabilistic or the
deterministic type – are underdetermined by empirical data in principle. This is
one of the core questions addressed in this paper. While, since the early 1990ies,
all the studies concerned with ambiguous causal inferences have been focussing on
ambiguities affecting the causal interpretation of probabilistic data, this paper in-
vestigates whether similar ambiguities arise in case of deterministic systems. Ad-
dressing this question is not only relevant for determining whether the empirical
underdetermination of causal inferences is a matter of principle or merely a conse-
quence of unsuitable or noisy data. It is also of relevance to those areas of causal
research that are in fact analyzing deterministic data, such as studies conducted in
fully controlled laboratory contexts or so-called narrow case or small-N studies in
social sciences.2

As is well known, algorithms uncovering causal Bayesian networks are not
applicable to deterministic structures that are investigated on a sufficiently fine-
grained level such that deterministic dependencies actually show up in the data,
because such systems violate one of the fundamental assumptions of the BN-
framework: causal faithfulness.3 Before we can thus address the primary ques-
tion of this paper, the basics of a Boolean procedure of causal reasoning, which is
custom-built for the analysis of deterministic structures, are introduced in section
3. Section 4 then shows that even data that has been collected against a noise-
free causal background such that deterministic dependencies are exhibited cannot
always unambiguously be assigned to causal structures. In fact, we shall find that
there exists a systematic empirical underdetermination of inferences to one specific
causal structure: deterministic chains. It will turn out that whenever deterministic
data could be modeled in terms of a causal chain, it could equally be modeled
in terms of a common cause structure. To every deterministic chain there exists
an empirically equivalent common cause structure. This is what I shall dub the
causal chain problem. The paper concludes by indicating an important asymme-
try between modeling deterministic data in terms of a chain and a common cause
structure, respectively. Even though the deterministic chain and common cause

2 Cf. Ragin (1987), Ragin (2000), or Mahoney (2000).
3 Cf. e.g. Spirtes, Glymour, and Scheines (2000 (1993)), pp. 53-57, Glymour (2007). The causal

faithfulness assumption is also briefly reviewed in section 2 below.
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models are empirically equivalent they behave radically differently under model
expansions.

2 Probabilistic Indistinguishability

In order to determine how causal structures and probability distributions are
connected, all the different causal discovery algorithms developed in the BN-
framework impose two important constraints on the causal structures and the prob-
abilistic data generated by these structures: The structures and the data must satisfy
the conditions expressed in the causal Markov assumption and in the faithfulness
assumption.4 The causal Markov assumption states that in a probability distribu-
tion P generated by a (acyclic)5 causal structure S a variable Z is independent of
all its non-effects in S conditional on all of Z’s direct causes, provided that no
direct common causes of any two variables in S are left out of P . According to
the faithfulness assumption, there are no other conditional independence relations
in P than the ones implied by the causal Markov assumption. As this section is
going to briefly review, probability distributions are not unambiguously connected
to causal structures by these two assumptions.

Such as to illustrate the ambiguities that arise when it comes to causally
analyzing probabilistic data consider the structures (a), (b) and (c) graphed in
figure 1. If these structures are causally Markov and faithful, they generate
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Fig. 1: (a), (b), and (c) represent three Markov equivalent causal structures – that equiva-
lence being symbolized by “ m≡ ”. Suitable extensions of graphs (a) and (c) yield
graphs (a1) and (c1), which are not Markov equivalent. Not all extensions of (a),
(b) and (c), however, resolve equivalencies. This is illustrated by extensions (a2)
and (c2).

4 Cf. e.g. Spirtes, Glymour, and Scheines (2000 (1993)), pp. 29-31, Glymour (1997), Gly-
mour (2007).

5 Both Boolean and BN-methodologies of causal reasoning are designed to uncover acyclic struc-
tures only. The causal structures considered in the following are hence implicitly assumed not to
feature feedbacks.
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probability distributions that exhibit identical conditional independence relations.
The three variables or factors contained in these structures are positively corre-
lated except for A and C being independent given B in all three structures, i.e.
p(A |B ∧ C) = p(A |B). (a), (b) and (c), hence, are Markov equivalent or prob-
abilistically indistinguishable, respectively.6 They constitute a Markov equiva-
lence class. Structures in a Markov equivalence class cannot be discerned by BN-
algorithms.

If indistinguishable structures are suitably extended by further variables, am-
biguities may disappear. For instance, structures (a1) and (c1) in figure 1 are such
disambiguating extensions of (a) and (c), respectively. Provided that the structure
depicted in graph (c1) is causally Markov and faithful, it, for example, gives rise to
a dependence ofA and E, i.e. p(A |E) > p(A), which is not the case for the struc-
ture represented by (a1). However, not all extensions of Markov equivalents resolve
ambiguities, as e.g. extensions (a2) and (c2) of (a) and (c) illustrate. Even though
(a2) and (c2) are probabilistically distinguishable from (a) and (c), they are again
contained in one and the same Markov equivalence class, as they induce identical
conditional independence relations among their five variables. Frydenberg (1990)
and Verma and Pearl (1991) have shown that probabilistic indistinguishability can
be nicely captured in graphical terms: Two (acyclic) causal graphs G1 and G2 rep-
resent two probabilistically indistinguishable causally Markov and faithful causal
structures iff (i) G1 and G2 have the same vertex set; (ii) G1 and G2 have the same
adjacencies; and (iii) G1 and G2 have the same unshielded colliders, where an un-
shielded collider is constituted by two edges that collide at the same vertex and
whose tails are not adjacent.7

Countless causal structures are probabilistically indistinguishable in this sense
and, accordingly, many causal inferences drawn on the basis of probabilistic data
are ambiguous. There are several proposal in the literature as to how to disam-
biguate the causal interpretation of probabilistic data. Broadly, these proposals can
be grouped into two categories. The first category is constituted by suggestions to
the effect that structures as (a), (b) and (c) or (a2) and (c2) should be discerned by
drawing on additional empirical information as temporal orderings of token events
that instantiate the event types involved in these structures.8 The disambiguation
approaches contained in the second category resort to established causal knowl-
edge about the specific structure under investigation, as e.g. knowledge about how
to manipulate a particular structure in a systematic way.9

6 Cf. e.g. Pearl (2000), pp. 19, 145, Verma and Pearl (1991).
7 Cf. also Spirtes, Glymour, and Scheines (2000 (1993)) and Glymour (1997). Two vertices V1

and V2 are said to be adjacent in a graph G iff there is an edge between V1 and V2 in G. In a directed
edge from a vertex V1 to a vertex V2, V1 is called the tail and V2 the head. Two edges collide at a
vertex V1 iff V1 is the head of both edges.

8 Cf. e.g. Suppes (1970).
9 Cf. Spirtes, Glymour, and Scheines (2000 (1993)), ch. 4, Pearl (2000), or Woodward (2003), ch.

3.
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As indicated in the introduction, rather than further investigating how causal
inferences based on probability distributions can be disambiguated, the paper at
hand shall be concerned with the question whether similar ambiguities arise in
case of deterministic structures. To this end, the next section introduces the basics
of a Boolean procedure that uncovers such structures.

3 Uncovering Deterministic Structures

Even though there is little disagreement in the literature on the fact that many causal
structures, especially on a macro level, are ultimately deterministic, deterministic
data cannot be analyzed within the dominant (BN) framework, as such data features
more conditional independence relations than are implied by the Markov condition
and, thus, violates faithfulness.10 In order to illustrate this violation of faithfulness
consider structure (c) in figure 1 and, for simplicity, suppose that B is sufficient
and necessary for C. In that case, B and A are independent conditional on C, i.e.
p(A|B ∧ C) = p(A|C), which is not implied by the causal Markov assumption.
In a deterministic structure every value of at least one exogenous variable uniquely
determines the values of at least one endogenous variable.11 Such deterministic
dependencies may, of course, not show up in corresponding data, if, for instance,
not all variables involved in the structure are contained in the set of investigated
variables or if not all relevant factors are controlled for in a pertaining study. How-
ever, if deterministic structures are investigated against a causally homogeneous
background – say, in a laboratory context – to the effect that deterministic depen-
dencies are actually exhibited in the data, the faithfulness assumption is violated as
illustrated above.

Deterministic causal structures are traditionally analyzed by methodologies
invoking Boolean techniques as e.g. Quine-McCluskey optimization of truth-
functions.12 The main modern developments in this tradition can be found in Ragin
(1987, 2000) and May (1999), as well as in Baumgartner (2008). For lack of space,
a Boolean algorithm cannot be fully exhibited in the present context. This section is
merely going to present the essential conceptual core of Boolean causal reasoning.
The exemplary data used to illustrate the causal chain problem will then be kept
as simple as possible, such that the problem becomes transparent without in-depth
insights into the details of Boolean algorithms.

Boolean methodologies are designed to unfold deterministic structures on type
level, i.e. they analyze general causation.13 The relata of general causation are
event types or factors for short. A factor that causes another factor is said to be

10 Cf. e.g. Spirtes, Glymour, and Scheines (2000 (1993)), pp. 53-57, or Glymour (2007).
11 For details cf. Glymour (2007), p. 236.
12 Cf. e.g. in Quine (1952, 1959).
13 At least two kinds of causal relations must be discerned: “Drinking is a cause of drunkenness”

is a case of general causation, i.e. causation among event types or factors, while “Shamus’ drinking
of 6 beers at noon on September 7, 2004 causes Shamus’ drunkenness in the afternoon of September
7, 2004” relates token events and, accordingly, is a case of singular causation.
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causally relevant to the latter. Factors are taken to be similarity sets of event tokens.
They are sets of type identical token events, of events that share at least one feature.
Whenever a member of a similarity set that corresponds to an event type occurs,
the latter is said to be instantiated. Factors are symbolized by italicized capital
letters A, B, etc. They are negatable. The negation of a factor A is written thus:
A. A is simply defined as the complementary set of A. Alternatively, factors
can be seen as binary variables that take the value 1 whenever an event of the
corresponding type occurs and the value 0 whenever no such event occurs. That
means Boolean algorithms are custom-built for deterministic structures featuring
binary variables.14

Causal analyses are always relativized to a set of investigated factors. This set
is referred to as the factor frame of a causal investigation. Factors are virtually
never causally relevant to their effects in isolation. Rather, they are parts of whole
causing complexes – complex causes. A complex cause only becomes causally
effective if all of its constituents are co-instantiated, i.e. instantiated close-by or
coincidently. Moreover, causes do not determine their direct effects to occur any-
where and anytime, but close-by. Determining a specific spatiotemporal interval
such that, when factors are instantiated within that interval, they can be said to be
coincidently instantiated is an intricate problem that, for lack of space, shall be
sidestepped here.15 As is usually done in studies on causal reasoning, I shall sim-
ply assume that for a given causal process under investigation it is sufficiently clear
what the coincidence relation amounts to. Coincidently instantiated factors are
termed coincidences. A coincidence can be seen as a conjunction of coincidently
instantiated factorsA1∧A2∧. . .∧An, which for simplicity shall be abbreviated by
a mere concatenation of pertaining factors: A1A2 . . . An. Coincidences constitute
the empirical data processed by Boolean procedures.16 Data collection, of course,
has to comply with specific constraints that guarantee the causal interpretability
of that data. For instance, data must be collected against a homogeneous back-
ground or data collection must be exhaustive. As we are exclusively concerned
with the causal interpretation of empirical data, the latter can simply be assumed
to be properly collected here.

Such as to illustrate the nature of the data processed by Boolean procedures,
take the factor frame F1 consisting of the factors A, B, C, D, and E. Suppose, the
behavior of these five factors is regulated by some deterministic causal structure.
That there are deterministic dependencies among these factors means that they are
not co-instantiatable in all logically possible combinations. If, for instance, factor

14 The restriction to binary variables primarily serves conceptual simplicity. It allows for a straight-
forward implementation of Boolean optimization procedures, which are of great relevance to the un-
covering of deterministic structures. Nonetheless, the restriction to binary variables implies that
structures involving multi-valued variables must be encoded in binary terms before they can be
treated by Boolean procedures, which, though always possible in case of deterministic structures,
comes at the cost of an increased computational complexity (cf. e.g. Brayton and Khatri (1999)).

15 For more details on the notion of coincidence cf. Baumgartner ((2008)), appendix A.
16 Coincidences correspond to what Ragin (1987) calls configurations.
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ABCDE
ABCDE
ABCDE
ABCDE
ABCDE
ABCDE
ABCDE
ABCDE

Tab. 1: Exemplary coincidence list to be analyzed by Boolean methodologies.

A determines factor C, it is empirically impossible to realize the coincidence AC.
Thus, in order to infer a deterministic structure from empirical data, we need to
know what coincidences of the factors in our investigated frame are empirically
realizable. Boolean procedures, accordingly, infer causal structures from lists of
e.g. experimentally observed coincidences as listed in table 1. The first row of
that exemplary coincidence list features the coincidence ABCDE, which means
that the five factors in F1 have been observed to be instantiated coincidently. The
second row then reports an observation of ABCDE etc. In a nutshell, Boolean
algorithms assign causal structures to such coincidence lists by determining suffi-
ciency and necessity relationships among the factors contained in the lists and by
suitably minimalizing these dependencies in order to eliminate redundancies.17

For example, relative to the data listed in table 1 the coincidence ABCD is
sufficient for E, because this list contains one row such that ABCD is instantiated
in combination withE, viz. the first row, and no row such thatABCD is given and
E is not. ABCD, however, is not minimally sufficient for E, for ABCD contains
proper parts that are themselves sufficient for E. A conjunction of coincidently
instantiated factors A1A2 . . . An, n ≤ 1, is a minimally sufficient condition of a
factor B iff A1A2 . . . An is sufficient for B, i.e. A1A2 . . . An → B, and there is
no proper part α of A1A2 . . . An such that α→ B. A proper part of a conjunction
designates the result of any reduction of this conjunction by one conjunct. If this
notion of a minimally sufficient condition is applied to table 1, we find, for instance,
that ABC – which is a proper part of ABCD – is also sufficient for E, for table
1 does not record a coincidence such that ABC is given and E is not. ABC still
contains sufficient proper parts: All three of its conjuncts are themselves sufficient
for E relative to table 1. If we let a Boolean discovery algorithm parse through
table 1 in this vein and identify minimalized deterministic dependencies, we get
the following overall result:18

A ∨B ↔ C
A ∨B ∨ C ∨D ↔ E

(R)

17 For further details cf. Baumgartner (unpublished) and Baumgartner (2008).
18 Of course, C and E are moreover each minimally sufficient for themselves. However, as self-

causation is normally excluded, these reflexive dependencies are not amenable to a causal interpre-
tation to begin with. Reflexive dependencies are therefore neglected in the context at hand.
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Fig. 2: A causal chain and an epiphenomenon that both could underly the behavior of the
factors in F1 and, accordingly, generate the data in table 1.19

In our exemplary coincidence list factor C is instantiated if and only if A or B
are instantiated, and E is instantiated if and only if A, B, C or D are instantiated.
This follows from the fact that there are no coincidences including AC, BC, AE,
BE, CE, DE, ABC and ABCDE in table 1. That does not mean that, say, A
is sufficient for C in isolation. As mentioned above, causally interpretable data
must always be collected against a particular background. Correspondingly, table
1 merely determines A to be sufficient for C relative to that specific configuration
of unanalyzed background conditions.

A Boolean procedure first identifies a set of deterministic dependencies – (R) in
our simple exemplary case – that hold among the factors in an analyzed coincidence
list and then, in a second step, causally interprets that set. Without going into the
details of causal interpretation rules, it can easily be seen that the data in table
1 could have been generated by, at least, the two causal structures depicted in
figure 2.19 Both the deterministic chain (d) and the common cause structure or
epiphenomenon20 (e) give rise to exactly those dependencies among the factors
in F1 that are reported in (R). Or put differently, according to both (d) and (e)
precisely those coincidences ofA,B,C,D, andE are empirically realizable which

19 Dependencies as recorded in (R) are not as straightforwardly causally interpretable as might be
suggested here. Mackie’s (1974) famous Manchester Factory Hooters example demonstrates that
minimally sufficient conditions are not directly amenable to a causal interpretation. In Baumgart-
ner (2008) I indicate what additional constraints have to be met in order to warrantably causally
interpret dependencies as in (R). For the context at hand, however, we can ignore these complica-
tions.

19 Note that the arrows in these graphs represent a specific form of deterministic direct causal
relevance: An edge as 〈A, C〉 signifies that A is a sufficient direct cause of C. This graphical
notation is not to be confounded with arrows in graphical representations as can be found in Spirtes
(2000 (1993)) or Pearl (2000) where arrows stand for any functional dependence.

20 In the following, I interchangeably speak of common cause structures and epiphenomena. Note
that this terminology differs from the notion of an epiphenomenon used in the literature on mental
causation. In the latter context an epiphenomenon is a physically caused mental side effect which
itself cannot cause anything. Here “epiphenomenon” just describes a causal structure featuring at
least one cause with at least two parallel effects (cf. e.g. graphs (c), (c1) or (c2) of figure 1 or (e) of
figure 2). Nothing with respect to a causal impotence of these parallel effects is implied by referring
to such a structure as being epiphenomenal.
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are listed in table 1. If these two deterministic structures are investigated against a
causally homogeneous background, they generate the exact same coincidence data.
I shall, therefore, refer to (d) and (e) as c-equivalent causal structures. In sum, thus,
Boolean algorithms assign sets of c-equivalent causal structures to coincidence lists
as table 1 along the lines sketched in this section. These sets sometimes contain
one single structure, and sometimes, as illustrated in the example discussed in this
section, multiple c-equivalent structures.21

4 The Problem

Notwithstanding the fact that structures (d) and (e) regulate the behavior of the
factors in F1 identically, they differ in causal respects. According to (d), A is in-
directly causally relevant for E, while it is attributed direct causal relevance for
E by (e). Moreover, C is causally relevant for E in (d), yet not in (e). These
significant differences in causal structuring, however, do not affect the behavior
of the factors in F1 at all. Any coincidence of these factors is either compatible
with both (d) and (e) or with neither of the two structures. This shows that not
only probabilistic data, but also (noise-free) deterministic data is not always unam-
biguously causally interpretable. Furthermore, this section is going to demonstrate
that the c-equivalence of (d) and (e) is not some idiosyncrasy of these particular
structures or of the data listed in table 1. Rather, to every deterministic chain there
exists an epiphenomenon generating the same coincidence data as the chain. Every
deterministic chain is reducible to an epiphenomenon.

In order to see the general reducibility of chains to epiphenomena, it suffices
to realize that the characteristic structural feature of deterministic chains can also
be found in a specific kind of epiphenomena. Every deterministic chain comprises
at least two entangled factors: Two factors X1 and X2 are entangled iff all factors
contained in minimally sufficient conditions of X1 are part of minimally sufficient
conditions of X2 as well. A factor X is said to be part of a minimally sufficient
condition α if X is a conjunct contained in α. If X is the only conjunct in a min-
imally sufficient condition, it is trivially part thereof. To parts of minimally suf-
ficient conditions I shall also refer as determinants in the following. While every
deterministic chain features at least two factors X1 and X2 such that all determi-
nants of X1 are determinants of X2 and, as a logical consequence thereof, X1 is
a determinant of X2, some common cause structures also comprise thus entangled
factors. To illustrate, consider our exemplary structures (d) and (e): Factors C and
E are not only entangled in (d) but also in (e). Whatever is minimally sufficient for
C is also minimally sufficient for E in both (d) and (e). Epiphenomena featuring at
least two entangled factors shall, accordingly, be referred to as entangled epiphe-
nomena. The chain (d) can be claimed to exhibit the dependencies expressed in
(1), while the epiphenomenon (e) specifies the dependencies in (2).

21 Cf. Baumgartner (2008).
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(A ∨B ↔ C) ∧ (C ∨D ↔ E) (1)

(A ∨B ↔ C) ∧ (A ∨B ∨D ↔ E) (2)

(1) and (2) are logically equivalent, which can easily be established by alternately
substituting C and A ∨ B in the second conjuncts of the two expressions. This
substitutability is guaranteed by the first conjuncts of (1) and (2). The two ex-
pressions are moreover logically equivalent to a conjunction of the dependencies
mentioned in (R). To every expression of type (1) there exists a logically equivalent
expression of type (2), and, accordingly, to every deterministic chain there exists a
c-equivalent entangled epiphenomenon.22

While entanglements are the characteristic of chains, there are epiphenomena
without entangled factors, as e.g. structure (c1) in figure 1. Epiphenomena with-
out entanglements are not c-equivalent to a chain. According to (c1), the parallel
effects A and C of the common cause B can be instantiated in all logically possi-
ble combinations, whereas in virtue of the corresponding chain (a1) C is instanti-
ated whenever there is an instance of A. That is, while all chains contain at least
two entangled factors, epiphenomena may, but must not feature entanglements.
‘Ordinary’ deterministic epiphenomena without entanglements are unambiguously
identifiable via the coincidence lists they generate.

However, based on deterministic coincidence data an unambiguous inference to
causal chains is excluded in principle. Coincidence data which can be modeled in
terms of a chain can equally be modeled in terms of an entangled epiphenomenon.
To this indistinguishability of deterministic chains and entangled epiphenomena I
shall in the following refer as the chain problem.

Chain Problem: Whenever causal structures are investigated on such a fine-
grained level that deterministic dependencies are exhibited in pertaining co-
incidence data L and L is compatible with a causal chain S1, there exists an
entangled epiphenomenon S2 such that L is compatible with S2 as well. De-
terministic (noise-free) coincidence data cannot unambiguously be identified
to be the result of a chain.

Note that the chain problem is characteristic for deterministic data, i.e. data that
does not exhibit all 2n logically possible configurations of n factors in a causally
analyzed frame. If the causal structure behind our exemplary coincidence list 1
were not investigated against a noise-free background to the effect that our data
would consist of a frequency distribution listing frequencies for all 32 logically
possible combinations of the five factors A, B, C, D, E and if that frequency
distribution, moreover, were to satisfy the Markov and faithfulness assumptions,
BN-algorithms would be able to distinguish between structures (d) and (e). As (d)
and (e) do not have identical unshielded colliders they are not Markov equivalent.

22 Further exemplary reductions of chains to epiphenomena can be found in figures 4, 5, and 6
below.
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This finding, of course, raises the somewhat counterintuitive question whether de-
terministic structures should deliberately not be investigated on such a fine-grained
level that deterministic dependencies are manifested, i.e. whether a certain amount
of confounding noise is a desirable feature of causally analyzed empirical data
after all. For, while noise-free deterministic data in principle does not allow for
unambiguous inferences to chains, unambiguous inferences to chains are not ex-
cluded relative to a noisy background that generates a causally Markov and faithful
frequency distribution. An answer to this question has to await another paper.

The rest of this paper shall be dedicated to the question how ambiguities affect-
ing the causal interpretation of deterministic data can possibly be reduced or even
avoided completely. For, clearly, the chain problem heavily conflicts with com-
mon intuitions according to which deterministic chains are omnipresent in nature,
at least on a macro level. Hence, what are the grounds based on which we ever
so often intuitively or pre-theoretically model deterministic data in terms of chains
rather than common cause structures? This question becomes even more pressing
if we no longer treat the factors in our exemplary frame F1 in terms of abstract
variables, but provide them with concrete interpretations. For as soon as such in-
terpretations are provided, causal intuitions are as firm as can be when it comes to
opting for the chain or the epiphenomenon given a coincidence list as in table 1.
Consider the following interpretations:

Interpretation (I): Assume a car engine can be started in two ways only: either by
turning the key in the starter lock or by short-circuiting the ignition cable.
Whenever the engine is running, the corresponding car begins to move. The
car can be set in motion by alternative factors also, such as towing or pushing,
i.e. by external impulses:

A = Turning the key in the starter lock
B = Short-circuiting the ignition cable
C = Running engine
D = External impulse
E = Motion of the wheels.

Interpretation (I) clearly suggests the underlying causal structure to be (d) in figure
2. Hence, provided that the factors in table 1 are interpreted according to (I), we
tend to model the underlying process in terms of a chain.

Interpretation (II): Suppose in a particular city there are exactly two power sta-
tions. The power supply of a specific house, say house a, in that city entirely
depends on the power production in at least one of the two stations. Another
house, call it b, is equipped with a generator for cases of citywide power
failures. Whenever one of the two power stations produces electricity, both
a and b are power supplied:



12 5 DISAMBIGUATION CANDIDATES

A = Power production by station 1
B = Power production by station 2
C = Power supply of house a
D = Power production by the generator in b
E = Power supply of house b.

If the coincidences in table 1 are interpreted in the vein of (II), the behavior of the
factors in F1 is intuitively seen to be regulated by a common cause structure of
type (e).

Intuitively there is no doubt that the causal process starting with turning the
key in the starter lock and resulting in the motion of the wheels has the form of a
chain and that there is a common cause structure behind the power supply of the
houses a and b. Still, the coincidences in table 1 alone neither warrant the first
nor the second of these inferences. Therefore, our firm intuitions as regards causal
modeling relative to a respective interpretation cannot exclusively be based on the
deterministic data contained in table 1.

5 Disambiguation Candidates

Prima facie, a plausible reaction to the chain problem as presented thus far will
be to claim that this problem merely demonstrates the impossibility to positively
identify deterministic chains based on coincidence information alone. The chain
problem might be seen to establish that coincidence data must be complemented by
additional empirical information in order to allow for unambiguous inferences to
chainlike structures. When we pre-theoretically or informally model the processes
behind interpretations (I) and (II) we seem to implicitly draw on additional infor-
mation, which apparently resolves c-equivalencies. There are several conceivable
sources of additional information based on which solutions of the chain problem
might be developed.23 Let us consider them in turn.

5.1 Chronological Order

One suggestion to solve the chain problem by consulting additional sources of em-
pirical information could be to impose a chronological ordering onto the instances
of the factors in a causal structure. If it is stipulated that causes always occur before
their effects, a chain structure as graph (d) in figure 2 could be claimed to determine
instances of C to occur prior to the instances of E. This, in turn, does not hold for
the epiphenomenal structure depicted in graph (e). An entangled epiphenomenon
as (e) is compatible with instances of C and E occurring simultaneously. Such
as to illustrate this difference, graphs (d) and (e) are confronted with a timeline in
figure 3.

23 Most of the suggestions as to how to disambiguate inferences to complex causal structures con-
sidered in the following have also been discussed in the context of resolving probabilistic ambiguities
(cf. e.g. Suppes (1970), Spirtes, Glymour, and Scheines (2000 (1993)), Hausman (1998), or Wood-
ward (2003)).
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Fig. 3: The arrow on the left hand side represents the direction of time such that t1 < t2 <
t3. While (e) determines instances of C andE to occur simultaneously, (d) and (e1)
represent causal structures according to which C is instantiated before E.

As is well known, it is highly dubitable whether causes in fact can justifiably
be claimed to always occur before their effects and, thus, whether a simultaneity of
causes and effects can be excluded on a priori conceptual grounds.24 Nevertheless,
such as to see whether the ambiguities induced by the chain problem could, in prin-
ciple, be solved along these lines, let us abstain from these difficulties in the present
context and assume that causes generally occur prior to their effects. Subject to that
assumption, factors involved in a coincidence list as the one in table 1, which could
stem both from a chain and an entangled epiphenomenon, have to be compared as
to the chronological ordering of their instances. Finding C and E to be simultane-
ously instantiated then prompts an inference to the epiphenomenal model. So far
so good. Yet, what if instances of C and E are not found to occur simultaneously?
Can the structure behind table 1 unambiguously be modeled in terms of a chain, if
it is found that events of type C occur prior to events of type E? As structure (e1)
in figure 3 shows, that is not the case. Epiphenomenal structures are compatible
with simultaneous occurrences of their parallel effects, but they do not determine
such simultaneity. Effects of a common cause might well be instantiated sequen-
tially. Suppose, houses a and b in the power station example are connected to the
power stations by wiring of different length or of different conductivity, such that
electricity always reaches house a prior to house b. Nonetheless, of course, the
causal structure behind this chronological specification of the power station exam-
ple is to be modeled in terms of an epiphenomenon. Hence, while (e) might be
identifiable by means of chronological constraints, (d) and (e1) cannot thus be kept
apart, for they are not only c-equivalent, but also chronologically equivalent. Every
coincidence list that could be the result of a chain might just as well be the product
of a chronologically ordered entangled epiphenomenon of type (e1). Building the
direction of time into a criterion that distinguishes between chains and entangled
epiphenomena would merely allow for identifying those entangled epiphenomena
that happen to be constituted by simultaneously occurring parallel effects. Such a

24 Cf. e.g. Lewis (1979), Brand (1980) or Huemer and Kovitz (2003).
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criterion would, however, be of no help when it comes to identifying deterministic
chains.

5.2 Spatiotemporal Proximity

The direction of time is not the only further empirical information that could be
resorted to as a means to distinguish between chains and entangled epiphenomena.
Spatiotemporal proximity might be proposed as an alternative. If it is stipulated
that instances of causes occur proximately to the instances of their direct effects,
a chain structure as graph (d) can be claimed to determine instances of C to oc-
cur proximately to the instances of E. This does not hold for the epiphenomenal
structure (e). On the contrary, in an epiphenomenon there is no necessary spa-
tiotemporal connection between instances of parallel effects of a common cause.

As mentioned in section 3, causes determine their direct effects to occur within
a certain spatiotemporal interval or within the same situation. Yet, it is far from
clear what exactly this spatiotemporal relation is. Depending on the causal process
under investigation and the level of specification chosen for a causal analysis, in-
stances of causes and their direct effects can be said to be properly related only if
they are in plain spatiotemporal contact, while in other cases causes may well be
instantiated some nonzero distance away from their direct effects. The allowable
distance between causes and effects cannot be fixed to a specific spatiotemporal in-
terval. The theory of Special Relativity only provides an upper bound: Causes and
effects must be instantiated within each other’s light cones. Notwithstanding this
lacking specificity, given a concrete causal process and a level of specificity cho-
sen for the analysis of that process it is normally uncontroversial which factors can
be said to be proximately instantiated. In order to see whether the chain problem
could, at least in principle, be solved by somehow drawing on the spatiotemporal
association of the instances of causes and effects, let us, thus, in the present context
ignore the notorious fuzziness involved in the notion of spatiotemporal proximity
of the causal relata.

Assume we have identified a nonzero interval s that constitutes a suitable in-
terpretation of proximity for the factors in our exemplary frame F1. Such as to
determine whether the structure underlying the behavior of the factors in F1 is a
chain or an epiphenomenon by drawing on s it must be checked whether (i) C and
E are instantiated within s, whereas A ∨ B and E are not, or whether (ii) A ∨ B
and E are instantiated within s, whereas C and E are not. Let us suppose that
the scenario given in interpretation (I) is a case of type (i) and that the scenario
described by interpretation (II) is of type (ii). That is, we assume that the turning
of the starter key is proximate to the firing spark plug and the running engine, yet
not proximate to the turning wheels, which, instead, are proximate to the running
engine. Furthermore, the two power stations shall be taken to be proximate to the
power supplied houses, which themselves are not proximate to each other. Rela-
tive to such a constellation the chain and the epiphenomenal model could in fact
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be discerned by drawing on the spatiotemporal relation among the instances of the
involved factors.

Spatiotemporal proximity, however, only paves the way towards a solution of
the chain problem if we were in fact ready to model the structures behind examples
(I) and (II) differently given that spatiotemporal relations changed. Hence, let us
assume that some outlandish engineer designed a car whose starter lock is located
on the hubcap of the right rear wheel, to the effect that the turning of this car’s
starter key does not happen within s of the running engine, but, rather, within s
of the rolling wheels. Yet apart from this peculiarity, this unusual car resembles
ordinary cars in all detail. Or more abstractly put: Suppose this car constitutes
an instance of a constellation as described in (ii). Is the turning of the starter key
now directly causally relevant to the motion of the wheels? Would we be ready
to model the causal structure behind this car’s movement in terms of an entangled
epiphenomenon? Certainly not. The situation is completely analogous in case
of entangled epiphenomena. Supposing that houses a and b of the power supply
example are neighboring or, more generally, instantiated in terms of (i) does not
change the causal structuring of the underlying process at all. Given that the two
houses are proximate does not turn the epiphenomenon into a chain.

If the distinction between chains and entangled epiphenomena really hinges on
some form of spatiotemporal proximity, it must be a very special kind of proximity
that accounts for it. It must be a form of proximity such that ‘causal influence’
is transmitted from an instance of a cause to its proximate successor. In case of
the car with the starter lock on its hubcap, for instance, such transfer of ‘causal
influence’ can be claimed to proceed through the wiring and by mediation of the
engine and not directly from the lock to the wheels. Yet, a notion of spatiotempo-
ral proximity that involves transmission of ‘causal influence’, obviously, is of no
use when it comes to inferring causal structures from empirical data without prior
causal knowledge about the processes underlying the data. For whether ‘causal
influence’ is transmitted from C to E in our exemplary frame is just what is under
investigation.

5.3 Transference

Nonetheless, this finding might be taken to indicate that the chain problem could be
solved in the vein of the so-called transference theory of causation.25 The follow-
ing criterion to distinguish between the chain and the epiphenomenal model with
respect to the frame F1 might be proposed: If it is found that energy or momentum
or, more generally, some conserved quantity is transferred from instances of factor
C to instances of E, the behavior of the factors in F1 is regulated by a causal chain
– otherwise by an entangled epiphenomenon.

Prima facie, this criterion in fact seems to perfectly capture our pre-theoretic
reasons to model scenario (I) in terms of a chain and (II) in terms of an epiphe-

25 For a modern variant of this account see e.g. Dowe (2000).
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nomenon. There is a transfer of energy from the operating engine to the rolling
wheels, which, therefore, is a chain. In contrast, no energy is transferred from
house a to house b, which induces an epiphenomenal modeling. This modeling of
(I) and (II) is unaffected by any of the modifications of the examples discussed in
the previous section. Hence, even the causal structuring of the car whose starter
lock is located on a hubcap is identified to be a chain, because energy is transferred
from the turning of the lock to the spark plug and from the operating engine to the
wheels.

As in case of the disambiguation candidates discussed above, there are prin-
cipled objections against drawing on transfer processes in causal reasoning. First,
it has been pointed out that by far not all causal processes – notably in the field
of social sciences – in fact involve energy transfer, and second, it has been argued
that the identification of transfer processes presupposes a considerable amount of
prior causal knowledge about investigated structures.26 At the core of transfer-
ence theories lies the distinction between genuine causal processes and so-called
pseudo-processes: While a genuine causal process features energy transmission,
a pseudo-process does not. Yet, in order to make sense of the notion of energy
transmission, clarity on what a causal process is needs to be provided. Identifying
the factors in an investigated structure whose instances are connected by energy
transfers is not independent of identifying the factors that are causally dependent.
Nonetheless, clarity on causal dependencies is just what the transference theoretic
framework intends to supply.27 However, for the sake of the argument, let us again
ignore these conceptual hurdles in order to see whether, given that clarity on the no-
tion of a transfer process could somehow be presupposed, the chain problem could
at least be solved for physical processes that in fact involve such transferences.
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Fig. 4: Structure (d1) is the result of introducing two additional factors into (d): X1 repre-
sents a transfer process between C and E and X2 stands for needle deflection in a
measuring device. To (d1) there again exists an c-equivalent epiphenomenon: (e2).

26 For a condensed presentation of the pros and cons of a transference theory of causation cf.
Dowe (Fall 2007). For more details cf. Dowe (2000), Kistler (2001).

27 Cf. Salmon (1994).
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Determining whether the structure behind the coincidences in table 1 is a chain
or an epiphenomenon, according to a transfer criterion, amounts to checking if
there is energy or some other conserved quantity being transferred from the in-
stances of C to the instances of E. That, in turn, requires that some kind of
measurement device is installed on the path from C to E. If this device detects
a transfer process, the structure generating the data in table 1 is a chain, otherwise
it turns out to be an epiphenomenon. Installing such a device induces an expansion
of the causal model depicted in graph (d). In graph (d1) of figure 4 this expan-
sion is illustrated by the introduction of factors X1 and X2, where X1 represents
some conserved quantity being transferred and X2 stands for needle deflection in a
corresponding measurement device.28 Clearly, (d1) is not c-equivalent to the entan-
gled epiphenomenon (e) of figure 2. Causal structures comprising different factors,
trivially, do not generate identical coincidence data. Yet, as (d1) is a causal chain
as well, there again exists a c-equivalent epiphenomenon, viz. (e2). Thus, while
a transfer criterion may distinguish between (d1) and (e), it does not distinguish
between (d1) and (e2). That means claiming that the needle deflection in a measur-
ing device is triggered by C and an ensuing transfer process, on the one hand, or
by A or B, on the other, empirically amounts to the same. Now, of course further
measurement devices might be installed on the edges 〈C,X1〉 and 〈X1, E〉 in (d1).
However, for all such expansions of (d1) there will exist c-equivalent epiphenom-
ena.

These new equivalencies might be taken to show that, even if energy transfer
from C to E is not measurable in a way that allows for a positive identification
of a chain, it should at least be possible to test whether such a transfer process –
if there is one going on – can be intercepted. For instance, without a crankshaft,
which translates the reciprocating linear piston motion into rotation, the kinetic
energy of the car engine is not transferred to the axis. If the crankshaft is broken,
the wheels do not turn even if the engine is running. Does this finding conclusively
establish the structure behind interpretation (I) to be chainlike? Intercepting the
transference of kinetic energy from the engine to the axis by manipulating the
crankshaft amounts to nothing else but showing that the wheels of the car only
start turning if the engine is running and the crankshaft is working properly or
there is some external impulse. Thus, C is revealed not to be sufficient for E in
isolation. C determines E only in combination with a functioning crankshaft X3:
CX3 ∨ D ↔ E. Hence, the structure (d) must be expanded by X3 such that C
and X3 constitute a complex cause of E. This is graphically captured by an arch

28 In the social science literature there is a related methodology called process-tracing that aims
to establish the existence of a causal mechanism between two investigated variables Y1 and Y2 by
successively filling in intermediate variables on the path 〈Y1, Y2〉 (cf. e.g. Mahoney (2000) or George
and Bennett (2005), ch. 10). Some authors interested in social mechanisms argue that such mech-
anisms are unobservable primitive entities (cf. e.g. Steinmetz (1998)). As such they could not be
treated on a par with ordinary causal variables as done in the graphs of figure 4. However, unobserv-
able mechanisms, apparently, are of no avail when it comes to distinguish between structures (d) and
(e) on empirical grounds.
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Fig. 5: (d2) is the result of introducing one additional factor into (d): X3 represents a co-
factor together with which C constitutes a complex cause ofE – the arch symboliz-
ing conjunction. However, to (d2) there again exists a c-equivalent epiphenomenon:
(e3).

connecting the edges 〈C,E〉 and 〈X3, E〉 in graph (d2) of figure 5.29 Again, (d2)
and (e) clearly are not c-equivalent. However, as (d2) is a chain structure as well,
there exists another c-equivalent entangled epiphenomenon: (e3). Whether CX3

is said to be a deterministic complex cause of E or whether AX3 and BX3 are
identified as E’s complex causes empirically amounts to the same.

That means, even though it is possible to distinguish between two particular
causal structures such as (d1) and (e) or (d2) and (e) by drawing on the notion
of a transfer process, to every expanded chain as (d1) and (d2) there still exist c-
equivalent epiphenomena. Thus, the chain problem is not solved by resorting to the
notion of a transfer process. Rather than solving the chain problem a transfer crite-
rion, at best, calls for further and further expansions of investigated factor frames
and corresponding causal models without ever positively identifying a determinis-
tic chain.

5.4 Interventions – Prior Causal Knowledge

As indicated in section 2, according to a popular proposal in the literature con-
cerned with probabilistic indistinguishability, Markov equivalent structures can be
discerned by suitably manipulating them. Very roughly put, e.g. Spirtes, Glymour,
and Scheines (2000 (1993)), ch. 7, argue that in order to distinguish between struc-
tures (a) and (c) of figure 1 it needs to be checked whether A and C can be manip-
ulated independently of each other.30 If that is the case, the structure regulating the
behavior of these factors is an epiphenomenon, otherwise it is a chain. In Wood-
ward (2003), this idea is embedded into a full-fledged interventionist theory of
causation. Richardson, Schulz, and Gopnik (2007) indicate that such an interven-
tionist methodology can also be usefully implemented when it comes to uncovering

29 For details on this graphical notation cf. Baumgartner (2006), ch. 2.
30 Similarly Pearl (2000).
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Fig. 6: In structures (d3) and (e4) I amounts to an intervention variable for C with respect
to E, whereas in (e5) it does not.

deterministic structures. Let us therefore see whether c-equivalent structures as (d)
and (e) can be kept apart by suitably drawing on interventions.

Interventionist inference procedures rest on a very specific notion of an inter-
vention which Woodward (2003), p. 98, defines along the following lines: I is an
intervention variable for a variable X with respect to a variable Y iff (i) I causes
X , (ii) certain values of I render X independent of all its other causes, (iii) any
directed path from I to Y goes through X , and (iv) I is (statistically) independent
of any variable Z that causes Y and that is located on a directed path that does
not go through X . In case of deterministic structures, an intervention variable for
X with respect to Y can simply be understood as an exogenous factor I that is
sufficient and directly causally relevant for X and any directed path from I to Y
goes through X . For instance, I is an intervention variable for C with respect to
E in structures (d3) and (e4) of figure 6. The variable I in structure (e5), however,
violates condition (iii) as it is not only directly relevant to C but also to E.

Drawing on that notion of an intervention in order to distinguish between struc-
tures (d) and (e) then amounts to the following: If, against the causal background of
table 1, there is at least one way to intervene on C that is systematically accompa-
nied by a change in E – for brevity, call this scenario T1 –, the underlying structure
is a chain, otherwise – scenario T2 – it is an epiphenomenon.31 Let us examine the
merits of this proposal. If every manipulation of C by means of a variable I leaves
E unaltered, i.e. in case of T2, the structure regulating the factors in our exem-
plary frame indeed cannot be a chain. The only structure that can accommodate an
expansion of the original factor frame yielding scenario T2 is structure (e4). This
shows that ordinary non-entangled epiphenomena can be positively identified on
empirical grounds within an interventionist framework. Does this framework also
allow for a positive identification of chains? Assume that suitably manipulating
C by means of a factor I is accompanied by a corresponding change in E, thus,
assume that T1 obtains. On the face of it, there are two structures that could ac-
count for T1, viz. (d3) and (e5). However, only in structure (d3) I actually satisfies

31 Cf. Woodward (2003), p. 101.
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the constraints imposed on interventions above. In (e5) I violates condition (iii)
because it is not only directly relevant to C but also to E. That is, if I is assumed
to be an intervention variable for C with respect to E, only the chain model can
accommodate a continuing dependency of C and E under manipulations of C by
means of I . Provided that I is an intervention, the inference to chains and entangled
epiphenomena, respectively, can in fact be disambiguated within the interventionist
framework.

A positive identification of deterministic chains along these lines, of course,
crucially rests on the assumption that I indeed is an intervention. How can such
an assumption be justified, i.e. how is I revealed to be an intervention variable
for C with respect to E given that manipulating C by means of I is accompanied
by corresponding changes in E? Here a problem emerges: Demonstrating that I
represents an intervention on C with respect to E relative to scenario T1 is not
independent of determining whether the causal structure responsible for the oc-
currence of T1 is adequately modeled in terms of (d3) or of (e5). For in order to
substantiate that I is an intervention variable for C with respect to E it must be
shown that there is no direct causal connection between I and E. That means it
must be shown that the structure generating scenario T1 is not an entangled epiphe-
nomenon of type (e5) – which then, of course, leaves (d3) as only remaining model
candidate. Whether that indeed is the case or not, however, is just the question
raised by the chain problem. In order to establish that I is an intervention on C
with respect toE, it must be presupposed that T1 is not adequately accounted for in
terms of (e5). Plainly, if the assumption that I represents an intervention on C with
respect toE is then used to determine whether the structure regulating the behavior
of the factors in the extended frame {A,B,C,D,E, I} is of form (e5) or not, the
question raised by the chain problem is begged. In sum, a disambiguation of the
inference to deterministic chains along the interventionist lines is a disambigua-
tion by means of a causal assumption that, in case of scenario T1, simply excludes
modeling pertaining data in terms of an entangled epiphenomenon.

It is beyond doubt, however, that ever so often in experimental practice prior
causal knowledge is available that determines factors or variables to satisfy the con-
straints imposed on interventions above and that excludes entangled epiphenomena
as possible models, respectively. In case of scenario T1, such prior knowledge con-
clusively establishes that the behavior of the factors in our exemplary frame is gov-
erned by a deterministic chain. Clearly though, along these interventionist lines
the inference to chains is disambiguated on causal and not on empirical grounds.
Whenever no prior causal knowledge that excludes epiphenomenal models is avail-
able, causal chains cannot be positively identified by means of interventions. Fur-
thermore, whenever the inference to chains is disambiguated by invoking prior
causal knowledge, the question arises as to what warrants that knowledge. What
empirical evidence ultimately justifies assuming I to be an intervention variable
for C with respect to E in case of T1; or, equivalently, what empirical evidence
ultimately justifies the assumption that scenario T1 is not to be accounted for in
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terms of an entangled epiphenomenon? The considerations of this section render it
doubtful that, in the end, there exists an empirical vindication of such assumptions.

To sum up: All the different proposals to disambiguate the inference to deter-
ministic chains discussed in this section embark on the same core strategy. They
all aim to resolve ambiguities by broadening the empirical basis based on which
the structure behind the data in table 1 is to be identified. On the one hand, we
have found that even though additional information about temporal orderings or
spatiotemporal relations among events instantiating the factors in table 1 may dis-
tinguish between two particular causal models as e.g. (d) and (e) in figure 3, such
additional information nonetheless does not ground conclusive identifications of
deterministic chains. On the other hand, resolving ambiguities by drawing on trans-
fer processes or interventions essentially amounts to expanding the factor frame of
table 1 and collecting additional coincidence information about the factors con-
tained in those extended frames. Such collection of further coincidence data, triv-
ially, either breaks the entanglement of C and E or it does not. The fact that C and
E remain entangled relative to additional data is more precisely expressed in (CE):

(CE) For all coincidence lists Lx that result from expanding the factor frame
{A,B,C,D,E} of table 1 by any factors X1, . . . , Xn and from collecting
pertaining coincidence data over the frame {A,B,C,D,E,X1, . . . , Xn}: C
and E are entangled in Lx.

As long as collecting further coincidence data does not violate (CE), there exist
at least two c-equivalent models accounting for that data equally well. Collect-
ing more coincidence information does not by itself, i.e. without accompanying
causal assumptions that exclude the rivalling epiphenomenal model, allow for an
unambiguous inference to the deterministic chain. In whatever way further empir-
ical information that complies to (CE) is brought to bear, there will always exist a
common cause model that accounts for the data equally well as the chain model.
The fact that interventionist methodologies perform best when it comes to unam-
biguously assign a causal structure to table 1 suggests that the inference to deter-
ministic chains inevitably presupposes prior causal knowledge about the structure
under investigation. The chain problem, in turn, indicates that in case of deter-
ministic chains such knowledge is likely not to be justifiable on purely empirical
grounds and, accordingly, must ultimately be grounded in (non-empirical) causal
assumptions. The next section is going to reveal an important asymmetry between
modeling data in terms of deterministic chains and entangled epiphenomena – an
asymmetry which might be resorted to in order to justify such causal assumptions.

6 An Asymmetry Between Chains and Entangled Epiphenomena

While factor frame expansions and collecting further coincidence information
about the extended frame do not ground empirical distinctions between determin-
istic chains and entangled epiphenomena, this section is going to show that such
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expansions still bring about an important asymmetry between modeling data as
given in table 1 in terms of a chain and an entangled epiphenomenon, respectively.
In both our exemplary interpretations (I) and (II) of that data an utterly simplistic
causal structure is assumed to regulate the behavior of the factors in F1. Real cars
can be started in manifold ways, each of which involve many more factors than
merely the turning of a starter key or the short-circuiting of a cable. The same
holds for power supplied houses. The mere operating of power stations is com-
monly neither sufficient nor necessary for the power supply in houses. It takes a
sophisticated infrastructure to bring the electricity to the consumers and generators
or batteries can supply any houses, not just b, with power. F1 is extendable in
manifold ways when it comes to generating a more realistic scenario with respect
to our examples. Against the background of interpretation (I), F1 is extendable by,
say, the factors:

G = Starting the engine by use of jumper cables
H = Starting the engine by use of a mechanical starting device
I = Transmission of an electrical impulse to the spark plug.

The thus extended factor frame shall be labeledF2. In contrast to interpretation (I),
F1, when interpreted according to (II), is e.g. extendable by the following factor:

L = Power production by the generator in a.

This expansion of F1, interpreted in terms of (II), will be referred to as F3.
The expansions of F1 to F2 and F3 differ in an important respect: The expan-

sion of F1 to F2 is structure-conserving, whereas the same does not hold for the
expansion of F1 to F3. The feature of the graphs (d) and (e) which is character-
istic for the chain problem is the entanglement of C and E. This entanglement
is conserved when F1 – interpreted along the lines of (I) – is expanded to F2. It
is not only conserved upon expanding F1 by G, H , and I . Every factor that is
newly introduced into a deterministic chain as (d) and that is part of a minimally
sufficient condition of C, is part of a minimally sufficient condition of E as well.
Whatever determinant of C is introduced into structure (d) above the C vertex,
it is a determinant of E as well. This follows from the mere structure of causal
chains. In contrast to the structure-conserving expansion F2 of F1, expanding F1

– interpreted along the lines of (II) – to F3 suspends the entanglement of C and
E. For relative to such an expansion there will be cases in which house a is power
supplied while house b is not, for instance, when neither of the two power stations
operate, the generator in b is out of order, yet house a is supplied with electricity
by its own generator L. Accordingly, L is a determinant of C but not of E. In case
of interpretation (II), hence, expanding F1 supplements our data in table 1 by ad-
ditional coincidences to the effect that the entanglement of C and E is suspended.
This yields a coincidence list that is unambiguously assignable to an (ordinary)
epiphenomenon.

This difference with respect to expansions of chains and epiphenomena can be
nicely illustrated by graphical means. Graph (d*) of figure 7 represents a possible
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Fig. 7: Two possible expansions of graphs (d) and (e) in figure 2. Every determinant of
C introduced into (d) above the C vertex, necessarily, is a determinant of E. The
same does not hold for (e).

expansion of (d) which demonstrates that every determinant of C which is newly
introduced into (d) is a determinant of E as well. Take, for instance, X6 in (d*).
X6 is part of a minimally sufficient condition of C, viz. X1X6. Accordingly, X6

is moreover part of a minimally sufficient condition of E, viz. X1X4X6. Contrary
to the chain, an epiphenomenal structure does not necessitate newly introduced
determinants of C to be determinants of E as well. X1 in (e*) is a determinant of
C but not one of E.

Of course, there again is an entangled epiphenomenon that is c-equivalent to
(d*). Nonetheless, chains and entangled epiphenomena differ with respect to ex-
pansions of their factor frames. While chains necessarily conserve entanglements
across all factor frame extensions, entangled epiphenomena do not necessitate the
persistence of entanglements. The retention of entanglements across arbitrary fac-
tor frame or model extensions is a characteristic feature of deterministic chains.
In every deterministic chain there are at least two entangled factors whose entan-
glement subsists across all extensions. That is, such entanglements are necessary
conditions for a respective coincidence list to be the result of a causal chain. The
same does not hold for epiphenomena. Even though certain factors may be entan-
gled in epiphenomenal structures – as graph (e) demonstrates –, these structures do
not necessitate such entanglements to be permanent.

Therefore, even though modeling a coincidence list as the one in table 1 in
terms of a chain or an epiphenomenon is equally warranted by table 1, it makes
a difference whether somebody causally analyzing that data takes it to be gener-
ated by a chain or by an epiphenomenon. In order to clearly bring out that differ-
ence let us picture two different experimenters investigating the structure behind
table 1 – Fennella and Shamus. Assume that Fennella assigns chain (d) to table 1
and Shamus models that data in terms of epiphenomenon (e). Both Fennella and
Shamus equally account for table 1. Fennella, however, not only provides a causal
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model that adequately accounts for that data, but moreover assesses that no factor
newly introduced into her model in the course of further analysis of the structure
behind table 1 will resolve the entanglement of C and E. Put differently, Fennella
does not only claim the causal dependencies to subsist that are stated in (d), but
thereby also claims (CE). Accounting for the data in table 1 in terms of (d) im-
plies (CE). In contrast, by assigning the entangled epiphenomenon (e) to table 1
Shamus merely states the dependencies expressed in (e). He remains completely
non-committal with respect to (CE). (e) does not imply (CE). Hence, taking a co-
incidence list as 1 to be generated by a chain is a stronger claim than modeling the
causal structure behind table 1 in terms of an epiphenomenon.

Now, let us assume that Fennella and Shamus embark on further analysis of
the causal structure behind table 1. That is, they extend the factor frame F1 and
collect new coincidence data on the factors in the extended frame. Continuously
broadening the empirical basis of their study in this vein, trivially, brings about
either of two scenarios: The entanglement of C and E is not suspended – scenario
T1 – or the entanglement of C and E is suspended – scenario T2. If the latter sce-
nario obtains, i.e. if an extension of F1 leads to the discovery of a determinant of C
which is not at the same time a determinant of E, the structure behind the behavior
of the factors in F1 is proven to be epiphenomenal. Accordingly, Shamus’s model
is proven to be correct, whereas Fennella’s is falsified. Suppose, however, further
investigation into the causal structure behind F1 does not reveal a previously un-
known factor that suspends the entanglement of C and E, i.e. suppose T1 obtains.
Both Fennella and Shamus can extend their models such that they account for sce-
nario T1. A continuing entanglement of C and E can be modeled either in terms of
a chain or of an epiphenomenon. However, Fennella predicted that T1 would occur
from the beginning, whereas Shamus did not commit himself to either T1 or T2.
Thus, finding that T1 in fact obtains does not surprise Fennella at all. Fennella’s
claim (CE) receives empirical support by T1. Of course, the mere fact that (CE),
which is a logical consequence of Fennella’s chain model, is empirically confirmed
by T1 does not prove the chain model to be correct. Scenario T1 lends equal em-
pirical support to the chain as to the common cause model. Nonetheless, Fennella
can straightforwardly account for why T1 rather than T2 has occurred. In contrast,
even though Shamus can suitably extend his original model (e) such that every
newly introduced determinant of C is also a determinant of E, his epiphenomenal
model by itself does not account for why T1 rather than T2 has occurred. Maybe
Shamus can provide a different reason as to why the extension of the original frame
F1 did not lead to the discovery of a determinant of C that is not a determinant of
E as well – maybe prior causal knowledge about the process under investigation
is available that accounts for why T1 rather than T2 has occurred. Without such an
independent account for the subsistence of the entanglement of C and E, however,
finding that this entanglement has not been broken by further data must be some-
what surprising to Shamus. The epiphenomenal model (e) does not provide any
reason to expect T1 rather than T2 to occur.
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That means a chain and an associated entangled epiphenomenon have differ-
ent implications for expansions of the empirical basis of a causal analysis. This
asymmetry might be fruitfully exploited when it comes to choosing between the
two models. The previous section has casted doubt on there existing purely empir-
ical reasons that unambiguously call for modeling deterministic data that features
at least two entangled factors in terms of a chain. The methodology of causal rea-
soning that fares best when it comes to inferring deterministic chains arguably
is one embedded in an interventionist framework as e.g. propagated by Wood-
ward (2003). Yet, we have seen that interventionist methodologies presuppose a
causally entrenched notion of an intervention that excludes one of two possible
models that equally account for the entanglement of two factors by assumption.
The different implications of the chain and the epiphenomenal model with respect
to factor frame expansions could now be taken as grounds on which such disam-
biguating causal assumptions can be justified. Fennella’s chain model implies that
scenario T1 rather than T2 obtains and, thus, can be said to account for the fact
that (CE) holds in our exemplary case. As long as Shamus cannot come up with
an account of why T1 rather than T2 has occurred that fares equally well as Fen-
nella’s, a causal assumption that excludes the epiphenomenal model in the vein of
the interventionist framework is well-grounded and justified.

7 Conclusion

This paper has answered one question and raised another. It has negatively an-
swered the question as to whether ambiguities of causal reasoning are a peculiarity
of causally analyzing (noisy) probabilistic data. Analyzing deterministic structures
against ideally homogeneous backgrounds such that deterministic dependencies
are exhibited in the data by no means guarantees unambiguous causal inferences.
We have found that inferences to causal chains are systematically empirically un-
derdetermined. Whenever deterministic data could stem from a chain, it could
equally be the result of a common cause structure. The finding that determinis-
tic chains cannot be positively identified on purely empirical grounds raises the
question on what other grounds inferences to deterministic chains could be justi-
fied. We have seen that even though chain and associated common cause models
are empirically equivalent, they have different implications for expansions of the
empirical basis of a pertaining study. These differences could be resorted to in or-
der to justify causal assumptions that allow for a positive identification of causal
chains. However, this paper has at best provided some hints at how the inference to
deterministic chains could be non-empirically disambiguated. A general account
of how causal chains can be conclusively assigned to noise-free deterministic data
has to await another paper.
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